
science + computing gmbh
Hagellocherweg 71
D-72070 Tübingen, Germany
Phone: (49) 0 70 71 / 94 57-0
Fax: (49) 0 70 71 / 94 57 27

Finesse User’s Guide

Finesse User’s Guide

Version 4

June 1996

Finesse User’s Guide

This document is copyrighted. This document may not, in whole
or part, be copied, duplicated, reproduced, translated,
electronically stored, or reduced to machine readable form
without prior written consent from science + computing gmbh.

Although the material contained herein has been carefully
reviewed, science + computing gmbh does not warrant it to be
free of errors or omissions. science + computing gmbh reserves
the right to make corrections, updates, revisions or changes to the
information contained herein. science + computing gmbh does
not warrant the material described herein to be free of patent
infringement.

UNLESS PROVIDED OTHERWISE IN WRITING WITH science + computing gmbh, THE

PROGRAM DESCRIBED HEREIN IS PROVIDED AS IS WITHOUT WARRANTY OF ANY

KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. SOME STATES DO NOT ALLOW THE EXCLUSION OF IMPLIED

WARRANTIES. THE ABOVE EXCLUSION MAY NOT BE APPLICABLE TO ALL

PURCHASERS BECAUSE WARRANTY RIGHTS CAN VARY FROM STATE TO STATE. IN

NO EVENT WILL science + computing gmbh BE LIABLE TO ANYONE FOR SPECIAL,

COLLATERAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING ANY

LOST PROFITS OR LOST SAVINGS, ARISING OUT OF THE USE OR INABILITY TO USE

THIS PROGRAM. science + computing gmbh WILL NOT BE LIABLE EVEN IF IT HAS BEEN

NOTIFIED OF THE POSSIBILITY OF SUCH DAMAGE BY THE PURCHASER OR ANY

THIRD PARTY.

Printed in Germany

i

How to use this manual. ix
Purpose and audience . ix
Using this guide . ix
Notational conventions . x
Special characters in window declarations xi
Notes and cautions . xi
Associated documents . xii

1 Overview . 1
OSF/MOTIF interface for shell scripts 1
Variable window construction . 1
Easy handling . 2
Range of use . 2
Availability . 3

2 Installation . 5
Getting started . 5

Installation . 5
After the installation . 6
Licensing . 6
Getting a license . 7

3 Release notes version 4 9
Enhancements . 9

Modifying resource settings . 9
Perl interface . 10
Shell callbacks for menus . 10
Changes in modality of windows 11
Redirecting standard output . 11
Comments in window declarations 12
Default buttons . 12
Double clicking in lists . 12
Default action in text fields . 13
Error handling of Fsopen and Fsdisplay 13
List selection . 13
Width of FsPushButton fields . 13
Initializing empty info fields . 14
Multi-line labels . 14
Local path extension . 14

Contents

Documentation . 14
Examples . 14

Bug Fixes . 14
Known problems . 15

Standard command option . 15
Default resource settings . 15
Display_primes example . 15
csh examples on SCO Open Server 16
perl Installation . 16
Argument too long . 16

4 User guide. 17
Introduction . 17

How Finesse works . 17
Licensing of runtime applications 18
The examples directory . 18

Example: Hello World! . 20
Finesse initialization . 20
How to generate a Finesse dialog 21

Option menus . 24
Window declaration . 25
Widget declaration . 25
Variable return . 26
Window declaration using the C shell 27

Text fields . 28
Labels and texts . 29
Exit status of Finesse commands 29

Push buttons . 31
Predefined push buttons . 31
How to declare your own push buttons 32
The fsbutton variable . 33
Repeated window calls . 33

Radio and check boxes . 35
Radio boxes . 35
Checking on text entries . 37
Redirecting standard output . 37

Lists . 39
Selecting and displaying elements 39
Example program . 40
Default buttons . 41
Modyfying list entries . 42
 Examples . 43

File selection . 44
The echo window . 45
Window description from a file . 46
Interactive window description 46
How to save window parameter settings 46
Default settings when starting the application 47

Window states . 48
Window states . 49
Refreshing window entries . 50
Priority of window settings . 50

Window hierarchies . 52
Platform dependent window definitions using csh . . . 53
Shell callbacks . 54
Window hierarchy . 55
Modality of dialogs . 56

Finesse resources . 57
Finesse resources . 58
Saving Finesse resources to any file 59
Reading any Finesse resource file 59

Container widgets . 62
Nastran script . 62

Setting X resources . 67
Syntax of resource settings . 67
Instance names and class names of widgets 68
Setting resources in Finesse windows 73
Standard resource files . 75
The Finesse resource file . 75
Changing resources within the script 76
Setting X resources using the command line 78
Resource settings by users . 79

Initialization files . 81
The fsshinit initialization script . 81
Finesse function definitions . 81
Basic Finesse commands . 82
The fsdisplay function . 82
The fsopen command . 83
Exit status of Finesse function definitions 83
The fscshinit initialization script 84
The fsperlinit initialization script 85

5 Error messages. 87

6 User commands. 89

7 Widget reference. 97

8 Example programs 113
The master demo examples_sh . 114
The master demo examples_csh . 117
A window for listing and killing of processes 121

fkill script . 121

Resource file . 124
A window for file archiving . 126

software script . 127
Resource file . 130

Example stars . 131

v

Figure 1 sh/hello_world 20
Figure 2 Display from hello_world 20
Figure 3 csh/hello_world . 21
Figure 4 perl/hello_world . 21
Figure 5 option_menu script . 24
Figure 6 display from option_menu 25
Figure 7 csh/option_menu script 27
Figure 8 hello_name1 script . 28
Figure 9 Entering text . 28
Figure 10 sh/hello_name2 . 31
Figure 11 Text input with confirmation 32
Figure 12 Push button used in hello_name2 33
Figure 13 display from snack script . 35
Figure 14 script snack . 36
Figure 15 display from kill_sleep . 40
Figure 16 kill_sleep script . 41
Figure 17 script file_selection . 45
Figure 18 Display from file_selection 45
Figure 19 Output from file_selection script . 45
Figure 20 my_window script . 46
Figure 21 sh/display_primes . 49
Figure 22 Automatic window update 49
Figure 23 callbacks script . 53
Figure 24 Window hierarchy used in the callback script . 55
Figure 25 aba script segment . 57
Figure 26 Window output from aba script 58
Figure 27 File selection box screen . 60
Figure 28 nastran script . 65
Figure 29 nastran input window . 66
Figure 30 display from example csh/display_primes 76
Figure 31 csh/display_primes script 77
Figure 32 examples_sh . 114
Figure 33 Master demo examples_sh 115
Figure 34 examples_csh . 117
Figure 35 master demo examples_csh 119
Figure 36 Window for listing and killing processes 121
Figure 37 A window for delivering software 127
Figure 38 window stars . 131
Figure 39 listing stars . 137

Figures

vi Finesse User’s Guide

vii

Table 1 Supported platforms . 3
Table 2 Movement and editing commands. 29
Table 3 Updating list elements . 42
Table 4 Class and instance names of Finesse widgets 69
Table 5 Fslist keywords . 102
Table 6 FsPushButton -type keywords. 105
Table 7 Fswindow -btype keywords 112

Tables

viii Finesse User’s Guide

How to use this manual ix

How to use this manual

Purpose and
audience

This guide describes how to install and use Finesse. This
information is required by the system manager when setting up
Finesse and by the user when developing Finesse scripts.

Using this guide Chapter 1 introduces users to Finesse. It will show you who
would want to use the product.

Chapter 2 covers the installation of the system as well as
describing system requirements.

Chapter 3 contains the release notice which would be of value to
both the system administration and the user.

Chapter 4 contains the Finesse user guide. It describes the
commands and how they work.

Chapter 5 contains the reference pages for the Finesse commands.

Chapter 6 gives two complete examples of Finesse shell scripts.

Appendix A lists error messages and their meanings.

The glossary contains definitions for Finesse and X Windows
System terms.

x Finesse User’s Guide

Notational
conventions

This section discusses notational conventions used in this book.

Bold monospace In command examples, text shown in bold
monospace identifies user input that must
be typed exactly as shown.

Monospace In paragraph text, monospace identifies
command names, system calls, and data
structures and types.

In command examples, monospace
identifies command output, including error
messages.

In command syntax diagrams, text shown in
monospace must be typed exactly as
shown.

Italic In paragraph text, italic identifies new and
important terms and titles of documents.

In command syntax diagrams, italic

identifies variables that must be supplied by
the user.

{ } In command syntax diagrams, text
surrounded by curly brackets indicates a
choice. The choices available are shown
inside the curly brackets and separated by
the pipe (|) sign.

The following command example indicates
that you can enter either a or b:

command { a | b }

{ ... }+ In command syntax, text surrounded by
curly brackets with subscript + indicates a
choice that is repeated once or more.

[] In command syntax diagrams, square
brackets indicate optional data.

The following command example indicates
that definition of the variable output_file is
optional:

command input_file [output_file]

... In command syntax, horizontal ellipsis
shows repetition of the preceding item(s).

The following command example indicates
you can optionally specify more than one
input_file on the command line.

command input_file [input_file ...]

How to use this manual xi

key In paragraph text, text shown in key

indicates keyboard keys you must press to
execute the command. For example, return

refers to the carriage return key.

Two key terms separated by a hyphen
indicate two keys that you must press
simultaneously. For example, ctrl-d indicates
that you must press the d key while holding
down the ctrl key.

Special
characters in
window
declarations

The following characters have a special meaning within window
declarations:

; (semicolon)

Terminates widget declaration.

= (equal sign)

Is used for setting variables to a value.

(sharp sign)

Comment character.

tab

Is a word separator and a default separator for -items entries.

space

Is a word separator and a default separator for -items entries.

newline

Is a word separator and a default separator for -items entries.

‘ ‘ (single quotes)

Eliminate special meaning of other special characters. The values
of the following keywords can be surrounded by single quotes:

-label,-title,-name,-items,-fsbutton,-inputsep,
-outputsep, and assigning a value to a variable: var=value.
Single quotes inside of single quotes have to be escaped by a \
(backslash).

Notes and
cautions

This document presents notes and cautions in the following
formats.

Note A Note highlights supplemental information.

xii Finesse User’s Guide

Caution A Caution highlights information necessary to avoid damage to the

system.

Associated
documents

Using this software may require information not specific to the
tasks described in this document. The following list of
documentation may assist you with X Windows programming
questions.

X Window System User’s Guide

OSF/Motif User’s Guide

For more detailed information on the X window system, you can
find the following books from O’Reilly and Associates at your
local computer book store.

X Protocol Reference Manual

Xlib Progammer’s Manual

Xlib Reference Manual

X Window User’s Guide

XToolkit Intrinsics Progammer Manual

XToolkit Intrinsics Reference Manual

Motif Programming Manual

The X Window System in a Nutshell

Overview 1

O
v
e

rv
ie

w
O

v
e

rv
ie

w
O

v
e

rv
ie

w
O

v
e

rv
ie

w
O

v
e

rv
ie

w

Overview

This chapter contains information for users of Finesse. Basic
concepts of Finesse will be presented.

OSF/MOTIF
interface for shell
scripts

Implementing point and click dialogs in a shell script is usually
very time consuming and needs advance experience in window
programming. With Finesse you can generate these dialogs
quickly without any knowledge of X window or C programming.

With simple shell commands you create OSF/Motif windows
where users can select or fill in the appropriate values. On
confirmation, these values are returned to the shell script as shell
variables and are available for further processing.

Variable window
construction

You can build dialog boxes out of an extensive set of window
elements. Windows can be customized to meet various needs for
different input with the use of the following elements:

• labels

• push buttons

• text fields

• file selection boxes

• separators

• option menus

• check buttons

• radio buttons

• lists

• forms

1

2 Finesse User’s Guide

Customized resources may be set up to accommodate your
personal preferences. These resources include items such as:

• fonts

• colors

• widget sizes

• window positions

Easy handling Since Finesse is shell based, applications do not have to be
compiled and linked. The syntax of the shell you are using will be
used to generate windows so you do not have to learn a “new
language.” Existing shell scripts can be modified to incorporate
Finesse, and modifying window layouts is done quickly.

A comfortable resource mechanism manages parameter settings
that are specific for a certain user or application. Repeated access
to the same window automatically activates the previous
parameter settings.

Range of use Finesse is not only an excellent tool for creating new applications,
it is also useful for updating existing shell procedures. By
choosing appropriate window elements you can handle input far
more efficiently and minimize input errors.

Generating graphical user interfaces for Finite Element Analysis,
simplified handling of complex UNIX commands and of
administration scripts are but a few samples out of the wide range
of uses that Finesse supplies.

Overview 3

O
v
e

rv
ie

w
O

v
e

rv
ie

w
O

v
e

rv
ie

w
O

v
e

rv
ie

w
O

v
e

rv
ie

w

Availability Finesse is available on the following platforms:

Table 1 Supported platforms

Platform Operating System

HP PA-RISC HP-UX 9.0.X, 10.10

IBM RS/6000 AIX 3.2.5, 4.1.4

DEC Alpha OSF1 V3.2

Silicon Graphics IRIX 5.x, 6.2

Convex C-Series ConvexOS 11.x

SUN SPARC SunOS 4.1.3

SUN SPARC Solaris 2.4, 2.5

LINUX Linux 1.2.13

SCO Open Server SCO_SV 3.2

4 Finesse User’s Guide

Installation 5

In
sta

lla
tio

n
In

sta
lla

tio
n

In
sta

lla
tio

n
In

sta
lla

tio
n

In
sta

lla
tio

n

Installation

The Installation Chapter contains information on installing
Finesse.

Getting started To install Finesse you will need:

• The Finesse software

• A Finesse evaluation license or Finesse development license

• This book, Finesse User’s Guide

Installation

Your Finesse software is distributed as a compressed tar file. In
order to install the Finesse software, do the following:

Step 1 Make a directory to install the Finesse files into.

Example: # mkdir /usr/local

Step 2 cd into the installation directory.

Example: # cd /usr/local

Note The Finesse files will be extracted starting with the finesse directory.

Step 3 Install the Finesse software on this directory, either by copying it
to the directory or by extracting it from tape.

Example: # tar xvf devicename

where devicename is your tape drive name, such as
/dev/rmt/0mn for DAT at an HP.

Step 4 Uncompress the tar file:

Example: uncompress finesse-version.tar.Z

Step 5 Restore the finesse files:

2

6 Finesse User’s Guide

Example: tar xvf finesse-version.tar

Step 6 Refer to the “After the installation” section on page 6 for
configuration information.

After the installation

If you have not restoredFinesse in the /usr/local
subdirectory, set the FINESSEPATH environment variable to the
Finesse installation directory, including the finesse
subdirectory from the tar file.

Example: setenv FINESSEPATH /inst/dir/finesse

Note The environment variable FINESSEPATH only needs to be set if the

installation did NOT take place in /usr /local/finesse. If FINESSEPATH

is not set, the program searches in /usr/local/finesse.

Refer to “User guide,” on page 17 of this book for information on
using Finesse.

Licensing

There are three types of license keys for Finesse.

1. Finesse Evaluation key

The evaluation key is good for a time limited evaluation of
Finesse. The evaluation key is contained in the
$FINESSEPATH/.finesselicence file.

2. Finesse Development License key

The development key is a node locked key that allows
unrestricted use of Finesse on that workstation. The
development key is contained in the
$FINESSEPATH/.finesselicence file.

3. Finesse Distribution License Key

Any finesse application may be run-time licensed by
generating a specific license key for that application.
Run-time licensed applications will run on any workstation
and platform supported by finesse without further
licensing. Your finesse distribution contains the shell script
fskeygen that automatically generates and inserts
run-time licenses into applications. fskeygen requires a
finesse distribution license key to be able to generate
runtime licenses. This license key has to be inserted into the
file $FINESSEPATH/.applkeygenlicence.

Installation 7

In
sta

lla
tio

n
In

sta
lla

tio
n

In
sta

lla
tio

n
In

sta
lla

tio
n

In
sta

lla
tio

n

Refer to “Licensing of runtime applications,” on page 18
for more information on licensing.

Getting a license

Your Finesse software is distributed as a compressed tar file.
License keys are either contained in this file or provided
separately, depending on your distribution. Please see your
distribution notes for details of how to get a valid license.

8 Finesse User’s Guide

Release notes version 4 9

R
e

le
a

se
 n

o
te

s
R

e
le

a
se

 n
o

te
s v

e
rsio

n
R

e
le

a
se

 n
o

te
s v

e
rsio

n
R

e
le

a
se

 n
o

te
s v

e
rsio

n
R

e
le

a
se

 n
o

te
s

Release notes version 4

Finesse version 4 offers a bunch of features that have been
enhanced since version 3. Among the most important are the
possibility to convert resource settings during runtime, a perl
interface, "shell-callbacks" for radio, check, and option menus, the
possibility to define default fields and default actions, as well as
standard output being redirected to the Finesse echo window
automatically. The look-and-feel of Finesse applications has been
made even pleasanter by reducing the modality of Finesse
windows. This chapter is organized into the following categories:

• Enhancements—these are new features in V4 of Finesse
compared to V3.

• Fixed problems—these problems have been solved in Version
4 of Finesse

• Known Problems—these problems have been identified as of
Juni 15, 1996. Problems reported after this date are not
included in this document.

Enhancements The following new features have been added to Finesse for V4.

Modifying resource settings

The Fsdisplay command has a new -r option to modify X
resource settings in Finesse elements during runtime. This comes
in useful, for example, if on recalling a window you want to
change the background color for text fields with wrong input in
order to give users an optical help for correcting their input.
Calling

Fsdisplay -r name:resource:value

converts the X resource resource in widget name to the value value.
For simple Finesse elements such as FsPushButton, name means
the name given in the window declaration by the -name option.

3

10 Finesse User’s Guide

For compound elements such as FsText, consisting of label field
and text field, a number enclosed in square brackets can be added
if the desired X resource is not to be set for the main element. The
FsText main element is the text field, the label field has number
2. Calling

Fsdisplay -r mytext:background:red \

 -r mytext[2]:background:blue

will set the background colors for text element mytext to
different values for label field and text field. The chapter on
Setting X Resources contains a table that tells you which element
is the main element ([0]) and what are the numbers of other
elements. Fields in menus (FsRadio, FsCheck, and
FsOptionMenu) are also referenced by the name of their Finesse
element and receive successive numbers. An element with no
name set in the window declaration cannot convert settings of X
resources. Elements designed to convert resource settings must
not contain colons in their names.

Perl interface

Now Finesse commands can be embedded in perl scripts. To
achieve this, Finesse has got an additional shell type perl that
returns window information according to perl syntax. The user
interface has been realized with an initialization script
fsperlinit similar to those of the shell types sh and csh, and
being called at the beginning of the perl script dialog part.

Shell callbacks for menus

So far the widget FsPushButton was the only one to allow
returning to the shell script by using the-winstat touch option
and so to link certain widgets with certain shell script actions
(shell callbacks). Now this is possible as well in connection with
the menu fields FsRadio, FsCheck, and FsOptionMenu. These
three elements now possess additional options

-winstat { input | touch }

-data { yes | no }

-fsbutton value

to realize multiple connections between widgets ("When radio
element 'Canis maior' is pressed then select item sirius
from list ’main_stars’").

Release notes version 4 11

R
e

le
a

se
 n

o
te

s
R

e
le

a
se

 n
o

te
s v

e
rsio

n
R

e
le

a
se

 n
o

te
s v

e
rsio

n
R

e
le

a
se

 n
o

te
s v

e
rsio

n
R

e
le

a
se

 n
o

te
s

Menus containing -winstat touch return to the shell script
when any field is pressed. Window values are returned or not
according to the -data option. If the -fsbutton option has been
set, the variable fsbutton contains the corresponding value
when returning, otherwise the label of the menu field concerned
is returned in the variable fsbutton. So in the script you can
check flexibly either the menu or a single menu field.

Changes in modality of windows

Typically, a Finesse dialog is modal, i.e. usually one and only one
of the windows shown possesses the input focus, and only there
user input is possible. This quality reflects the sequential course of
scripts in the window dialog and makes possible programming
the user dialog in the script in a simple and structured way. This
modality has been reduced by several modifications from the
previous version while consistency to existing programs is
completely guaranteed:

• Generally windows are not any more insensitive; in
particular, there is no window shadowing any more. All the
same, input is still not possible in an inactive window, i.e. in
a window with status touch. You still cannot return to the
shell script from an inactive window. Windows are signaled
inactive by a one-way cursor.

• Echo window and save window for saving variables are
always accessible, i.e. input sensitive, independent of other
windows: they can be closed anytime, for example.

• External list windows and file selection windows are not
modal any more, i.e., those windows can be called
simultaneously and more than once from the main input
window. Input in those windows can be made at the same
time as in the main input window. When the main window is
inactive or closed, the corresponding list and file selection
windows are inactive or closed as well.

These modifications accomplish a user interaction that is more
comfortable and can be used more variably in the window dialogs
concerned.

Redirecting standard output

Now the Fsopen command can be called with the option -o:

Fsopen -o { 1 | 2 | 3 }

Thereby it is possible to redirect standard output and standard
error to the echo window. In sh type scripts afterwards all the

12 Finesse User’s Guide

standard output / error is redirected to the echo window
automatically up to the Fsclose command. In particular: by -o
1 standard output only, by -o 2 standard error only, by -o 3
standard output as well as standard error. In csh type scripts
options 2 and 3 are not different from each other as this shell type
does not support different routing of standard output and
standard error. Option 1 is different from option 2 and 3 in that
with 1, Finesse server error output is not redirected to the echo
window. This can be important especially in cases where there are
errors in the settings of X resources by means of the -r
Fsdisplay option (see above). Furthermore, in csh scripts you
have to make sure with every command that standard output and
standard error are redirected to echo windows. This can be done
by using the Finesse environment variable $FSSTDOUTFILE. For
example:

echo hallo > $FSSTDOUTFILE

Comments in window declarations

Now window declarations may contain comments. The comment
character is # (sharp sign). All characters following a # are ignored
up to the next newline character.

Default buttons

The default button of a window can be chosen by the FsWindow
option

-bdefault name

name designs the name of the FsPushButton activated by
pressing return inside the window. If the -bdefault option is
missing, the leftmost FsPushButton field of the FsPushButton
row that was the last to be declared in the window definition is set
as default. Setting a default only has an effect when the window is
opened for the first time as the default field changes according to
user input.

Double clicking in lists

You can link double clicking in a list to any push button in the
window concerned. The FsList option

-expert pushbutton_name

on double clicking executes the action that is defined by the
FsPushButton referenced by pushbutton_name. If the -expert

Release notes version 4 13

R
e

le
a

se
 n

o
te

s
R

e
le

a
se

 n
o

te
s v

e
rsio

n
R

e
le

a
se

 n
o

te
s v

e
rsio

n
R

e
le

a
se

 n
o

te
s v

e
rsio

n
R

e
le

a
se

 n
o

te
s

option is omitted, double clicking activates the default button of
the window, if this exists.

Default action in text fields

Usually, pressing return in a text field of FsText and
FsSelectionText widgets executes the default action of the
window. The option

-bdefault pushbutton_name

 may link a text field to any push button. Pressing return in the text
field then activates the corresponding push button.

Error handling of Fsopen and Fsdisplay

Error handling of Fsopen and Fsdisplay commands now is
placed in the initialization script. Therefore, an explicit status
check of these commands in the script is not necessary any more.
If the corresponding fsopen and fsdisplay commands return on
error the Finesse application terminates with an exit value of 1. In
particular, infinite loops created by missing status checks can thus
be avoided in the script.

List selection

Now you can browse lists in single mode while holding the mouse
button down in order to select an item. Your selection becomes
effective when you release the mouse button. This offers more
comfort for selecting items.

Width of FsPushButton fields

The FsPushButton option

-packing { equal | tight }

for the first push button within a row allows you to set
individually the width for every one button. Default is giving
equal width to all buttons in a row. The -packing tight option
prevents the width from being adapted automatically so that you
can set every single width by setting X resources.

14 Finesse User’s Guide

Initializing empty info fields

The info field in the upper part of a Finesse window is generated
only if it is specified by the -m argument in the Fsdisplay
command. An initially empty info field, which shall receive its
contents when calling the window later on, at least has to be
initialized with a blank by calling Fsdisplay -m ' '.

Multi-line labels

Newline characters are interpreted in FsLabel, too, so now you
can create labels with more than one line.

Local path extension

Starting with version 4, elementary Finesse commands used for
initialization scripts are accessible by local path extensions. In this
way installation and are completely independent from system
paths, and path extensions containing the application are
unnecessary. Only the specification of the environment variable
FINESSEPATH is required, if any other than the Finesse default
path /usr/local/finesse is used for installation.

Documentation

Version 4 documentation has been completely revised and
supplemented.

Examples

Starting with version 4, the directory examples takes the place of
the subdirectory demo. It contains several subdirectories csh,
perl, sh, app-defaults, app-defaults/bitmaps. Version 4
has been supplemented with some new examples. The examples
directory contains the master demos examples_sh and
examples_csh, from where the individual examples in their
corresponding subdirectories can easily be called. Apart from this,
the examples can still be called directly.

Bug Fixes The following bugs have been corrected from version 3.2.3:

Release notes version 4 15

R
e

le
a

se
 n

o
te

s
R

e
le

a
se

 n
o

te
s v

e
rsio

n
R

e
le

a
se

 n
o

te
s v

e
rsio

n
R

e
le

a
se

 n
o

te
s v

e
rsio

n
R

e
le

a
se

 n
o

te
s

• Window titles in file selection windows and external list
windows were set differently, depending on the architecture
used. If the elements FsSelectionText and FsList don't
set a -title option the corresponding push button label is
now set as a window title.

• In certain circumstances an inactive window could be closed
by means of the window decoration, if at the same time there
was an active window.

• The Fsecho command without an argument on some
architectures did not create a blank line in the echo window.

• The fsopen -x command returned 1 as its value.

• The cancel button in external lists did not restore the status
previous to opening the window.

• In an insensitive external list, the text field remained
sensitive.

Known problems The following are the known problems for Finesse V4.

Standard command option

DESCRIPTION: Standard command options corresponding to
application resources with tight bindings, for example, the
.borderWidth resource set by -bw, are ignored except the
-name option.

Default resource settings

DESCRIPTION: Because of varying X resource settings the layout
of our examples in the examples directories may differ slightly
between different computers.

Display_primes example

DESCRIPTION: The factor command is missing for Digital
UNIX. Therefore, the display_primes examples in
subdirectoriessh andcsh does not work correctly and should not
be started.

For SunOS-4.1.x the factor command is located in the
subdirectory /usr/games. The same is true for Linux if the
slackware distribution is used.

16 Finesse User’s Guide

csh examples on SCO Open Server

DESCRIPTION: The C-Shell on SCO Open Server is not
supported by Finesse, since this shell does not know the eval
command. Therefore all examples in subdirectory
examples/csh will not work.

perl Installation

DESCRIPTION: The scripts in subdirectory examples/perl
expect the perl interpreter to be installed on path
/usr/local/bin/perl. If perl is installed elsewhere, the path
component at the beginning of the perl scripts has to be changed
appropriately.

Argument too long

DESCRIPTION: Arguments to shell commands are of limited size,
which varies from system to system. This may lead to error
messages like “Argument too long” when the length of window
declarations or window update arguments exceeds this limit. On
many systems kernel parameters may be changed to raise this
limit.

User guide 17

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

User guide

Introduction Many UNIX applications are started with a shell script. In many
cases, you have a shell dialog at the beginning of the script to
gather information such as input and output files that will be
passed on to the application. Convenient utilities of X terminals
such as selecting items or setting options with a simple mouse
click, saving and reading of resource files, etc. are usually ignored
since it would require extensive programming to create X based
programs to collect such user data.

Finesse is a tool to generate and evaluate windows in shell scripts.
With the help of Finesse, you can easily convert dialog parts of
existing or future scripts to a mouse-oriented OSF/Motif user
interface. You don't need any X programming knowledge since
the windows are generated by several commands that are called
in the script. These window generation calls are easy-to-use. In a
short time, a graphical shell script user interface is available.

How Finesse works

By calling simple Finesse commands you create OSF/Motif
windows where any user can enter the necessary input
comfortably and quickly. When the input is confirmed, the
window entries are returned as shell variables to the shell script.
Management of window entries is handled through the usual X
application resource mechanism that saves the current values in a
file and uses them as default settings for subsequent calls.

One essential Finesse part is the application server that is set up at
the beginning of the shell script. It is in charge of the window
setup and the associated window and variable management. The
shell script communicates with the server by calling several
commands as Finesse clients. In this way, Finesse also enables you
to execute a complete shell dialog with X windows. The shell
script passes to the client parameters that contain the information
necessary to create and manage the windows. Like window

4

18 Finesse User’s Guide

entries, window descriptions can be saved in a separate file. At the
end of the Finesse shell dialog, the application server has to be
terminated.

As Finesse is called within shell scripts, you can make use of all
the utilities of your shell for window programming. For example,
command substitutions such as `hostname` may be used as
values for window entries.

Licensing of runtime applications

Runtime applications can be licensed inside the shell script. You
need no longer generate or modify the licensing file
.finesselicence used so far. Your software contains the shell
script fskeygen. The command

fskeygen scriptname

generates a runtime license for application scriptname and writes

FINESSEAPPLICATIONKEY licensestring

to the shell script. The script can be run without any license file.
Calling fskeygen repeatedly for a certain shell script only
replaces the license key in the licensing line. The licensing line can
be placed anywhere in the script. Existing applications need not
be licensed as licensing through .finesselicence is possible
as well.

The examples directory

Your software release contains a directory named examples,
which is located either in the /usr/local/finesse directory or in a
directory specified by the FINESSEPATH environment variable.
In the subdirectories csh, perl and sh you will find examples of
Finesse based shell scripts you might use as models for your own
shell scripts. The examples outlined in the text are partially taken
from these shell scripts. In the examples directory you will also
find to example scripts examples_sh and examples_csh. They
may be used for conveniently calling the examples in the
corresponding subdirectories. The subdirectory app-defaults
contains resource files to the examples. In order to make these
resource files available when calling the demos, you may set the X
environment variables XUSERFILESEARCHPATH or
XAPPLRESDIR, e.g.

setenv XAPPLRESDIR \
/usr/local/finesse/examples/app-defaults

User guide 19

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

Note Finesse applications are not limited to a certain UNIX shell. At the

very start of an application you have to call a shell dependent

script to perform the necessary initialization according to shell

type.

Finesse differentiates between the following types of scripts:

• sh for

– Bourne shell (sh)

– Korn shell (ksh)

– GNU-Bourne-Again shell (bash)

• csh for

– C shell (csh)

– TC shell (tcsh)

• perl for

– perl scripts

As sh based shells are far more suitable for script programming
than csh scripts, most of the examples in our text are Bourne shell
scripts.

20 Finesse User’s Guide

Example: Hello
World!

Our first example will be a shell script that creates a window with
the famous “Hello World!” message as shown in Figure 2.

Figure 1 sh/hello_world

Figure 2 Display from hello_world

Finesse initialization

Figure 1 shows the general structure of a Finesse application
inside a shell script.

When starting an application, there is a shell type dependent
initialization script to read (1). Usually, this will be found on a
path set by the variable FINESSEPATH, or if that variable has not
been set, on the default directory /usr/local/finesse. The
initialization script among other things defines the shell type (sh,
csh or perl) so that subsequent Finesse commands can return
window entries to the shell script with the correct syntax.

#! /bin/csh

csh script initialization
if (! $?FINESSEPATH) \

#! /bin/sh
sh script initialization
. ${FINESSEPATH-/usr/local/finesse}/fsshinit #(1)
Set up application server
Fsopen #(2)
Create window
Fsdisplay -w "FsWindow -btype o;" \
 -m "Hello World!" #(3)
Terminate application server
Fsclose #(4)

User guide 21

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

 set FINESSEPATH = /usr/local/finesse
source $FINESSEPATH/fscshinit

Set up application server
Fsopen # (2)

set hello = "Hello World\!"

Create window
Fsdisplay -w "FsWindow -btype o;" \
 -m "$hello" # (3)

Terminate application server
Fsclose # (4)

Figure 3 csh/hello_world

 Csh scripts have to read the file fscshinit in the place of
fsshinit, with the same path preference. Apart from that, the
corresponding csh script looks pretty similar. Unfortunately the
hello text has to be put into a separate variable, in order that the
exclamation mark is handled the same way by all plattforms.
Finally the perl version of the hello world example looks like this:

#! /usr/local/bin/perl

perl script initialization
$ENV{'FINESSEPATH'} = '/usr/local/finesse'
 if !$ENV{'FINESSEPATH'};
require("$ENV{'FINESSEPATH'}/fsperlinit");

Set up application server
&Fsopen(@ARGV);

Create window
&Fsdisplay("-w", "FsWindow -btype o;",
 "-m","Hello World");

Terminate application server
&Fsclose;

Figure 4 perl/hello_world

How to generate a Finesse dialog

After script initialization, the Finesse application server must be
started by the Fsopen command (2). Then you can enter any
number of further Finesse commands, for example (3). The
Fsdisplay argument list specifies the design of the window to

22 Finesse User’s Guide

create. To produce the “Hello World” window in our sh example
only the following line is necessary.

Fsdisplay -w "FsWindow -btype o;" -m "Hello World!"

with the options:

-w defines the actual window description, which in the simple
case above generates a window (FsWindow) with an OK button
(-btype o) :

-m adds a message to the window.

The window description defines the layout of a Finesse generated
window. It consists of widgets placed one below the other in the
window. For display the window description is passed to the
Fsdisplay command. In general, this transfer is possible by means
of a command option, redirecting from a file, or with standard
input:

Window description as a command option:

Fsdisplay -w “window description”

Window description out of a file:

Fsdisplay -f filename

Fsdisplay < filename

Window description from standard input:

Fsdisplay
(terminal input)

ctrl-d

Any sequence of Finesse commands quit Finesse by calling
Fsclose (4). This command is necessary to close the Finesse
application server. Otherwise the application server will continue
running even after the shell script has executed the last command
and quits. A Finesse dialog can be summarized as a sequence of
Finesse commands that start with Fsopen and end with
Fsclose. Inside one shell script you can repeatedly open and
close the Finesse server, for example when there is a non-
interactive interval between two window calls. Schematically, the
general order of Finesse commands in a shell script looks like the
following:

Finesse initialization by fscshinit and fsshinit, respectively

Fsopen
...
More Finesse commands
...
Fsclose

User guide 23

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

Fsopen
...
More Finesse commands
...
Fsclose

and so on.

24 Finesse User’s Guide

Option menus One of the essentials of Finesse is the ability to set window
contents from the shell and, vice versa, to return user entries to the
shell. In this way you can easily enhance shell scripts demanding
at least one interactive input by a mouse-oriented dialog. So in
many cases handling, viewing, and interpreting input will be
definitely improved.

In example 2, for a simple shell dialog we will look at an
application that opens a window, where the user can select one of
three different options out of a menu shown in Figure 5. After the
choice is confirmed by the OK option the echo command displays
the selected item.

Figure 5 option_menu script

The script starts with the sh initialization(1). To make calling
fsshinit independent from the actual place in the directory
tree, the path has again been set by the shell variable
FINESSEPATH. The next step is to assign the window definition
to the windef variable (2). In the subsequent Finesse dialog (3),
the value of this variable is passed to the Fsdisplay command
as an argument to the -w option. NotC shelle that in calling
Fsdisplay, the option $windef has to be surrounded by double
quotes (" ") to handle the whole definition as one argument.

After opening the window, the Fsdisplay command is blocked
so that the user can choose the desired option: One, Two, or
Three in the menu. Upon clicking the OK button the Fsdisplay
command closes and returns to the calling shell script. The shell
variable option now contains the chosen value, which is
displayed by the echo command. As usual the Finesse dialog
opens and closes with the Fsopen and Fsclose command,
respectively.

#! /bin/sh

. ${FINESSEPATH-/usr/local/finesse}/fsshinit #(1)

windef="
FsWindow -btype o -title 'Option Menu';
FsSeparator;
FsOptionMenu -label Options:
 -items 'One Two Three'
 -var option=Three;
FsSeparator;" #(2)

Fsopen
Fsdisplay -m "Select Option:" -w "$windef" #(3)
Fsclose

User guide 25

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

Figure 6 display from option_menu

Window declaration

In contrast to Figure 1, the window definition is rather long in
Figure 5. Therefore we recommend assigning it to a separate shell
variable. This assignment can take place at the beginning of the
shell script, making it possible to separate declaration and actual
dialog.

The windef definition of Figure 5 shows the typical structure of a
window declaration. Starting with the keyword FsWindow, it
contains the declaration of any number of widgets with widget
dependent arguments, separated from each other by a semicolon
(;). In our example, three widgets have been declared: two
separators by FsSeparator, and an option menu by
FsOptionMenu. The arguments used are determined by the
widget type.

In the window, widgets are displayed below each other according
to their order. Above the first user-defined widget, there is a label
where you can put any text by means of the Fsdisplay -m
option, such as, ”Hello World” or ”Select Option”. In the
lower part of the window you may find standard push buttons
like, for example, the OK-button.

Window declarations may contain comments. The comment
character is #. All characters following # on the same line are
ignored.

Widget declaration

Arguments for widget declaration as well as Finesse commands
have the form:

-keyword value

26 Finesse User’s Guide

Each widget possesses a number of keywords that are listed in the
"User Commands" chapter. Value is the character string up to the
next word separator (space, tab, carriage return) or up to the
semicolon at the end of the widget declaration. Every value
containing spaces or special characters (e.g., semicolon) can be
surrounded by single quotes to disable the special meaning of
these characters and make them part of a value. In our example,
the character string 'Option Menu', containing a space, is
marked as one value by single quotes. Without quotes only the
term Option would be interpreted as a value for the keyword
-title; the following term, Menu, would be read as the next
keyword and therefore cause the error message:

Window declaration syntax error: Menu

The value of the-items keyword regularly has to be put between
single quotes, as it typically contains several entries that are
separated themselves per default by spaces, tabs, or carriage
returns.

The -btype keyword allows placement of standard push buttons
in the bottom window area. Each one of these push buttons is
marked by one single letter; for example, the OK button is
referenced by the letter o.

The second FsWindow argument -title 'Option Menu' in
example 2 replaces the heading Finesse with Option Menu in the
window title bar. The option menu declaration has following
arguments:-label Options which defines the menu name. The
second argument is, -items 'One Two Three' which defines
the available options the user has to select from. The third
argument is, -var option=two, which specifies the window
variable option, and the assignment =Two, the default value
shown in the window display.

The -items and -var arguments are required in every
FsOptionMenu declaration; the -label argument is optional.

Variable return

The Fsdisplay command terminates when the entries in the
window are confirmed with OK. The window will close and the
variable declared with -var will be set in the shell script.
Subsequently, the values may be evaluated, for example in a
subsequent echo command. Details about variable setting in the
shell script will be explained in the section on initialization files.

Some widgets, likeFsOptionMenu, require a-var declaration as
an argument, because otherwise setting an option in the window

User guide 27

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

would make no sense. Arguments such as FsSeparator don't
have a -var option, because they will not return information.

Window declaration using the C shell

For the sake of comparison, here we show the C shell version of
our example, which has a slightly different form:
#! /bin/csh

if (! $?FINESSEPATH) \
set FINESSEPATH = /usr/local/finesse
source $FINESSEPATH/fscshinit

Define window elements

set fswin = "FsWindow -title 'Option Menu' -btype o;"
set fssep = "FsSeparator;"
set fsoptmen = "FsOptionMenu -label Options:"
set fsoptite = "-items 'One Two Three' -var
option=Two;"
set fsopt = "$fsoptmen $fsoptite"

windef has to be written as one line to support
all cshs

set windef = "$fswin $fssep $fsopt $fssep"

Fsopen
Fsdisplay -m "Select Option:" -w "$windef"
Fsclose

echo "Option selected: $option"

Figure 7 csh/option_menu script

Apart from the shell dependent initialization with fscshinit
mentioned above the essential difference to the Bourne shell
example consists in the fact that the window elements first are
defined separately and combined in the shell variable windef to
build the window definition afterwards. The reason for this
somewhat clumsy declaration is the difficulty that some csh shells
on different platforms behave differently in handling newline

characters in a window declaration. So this kind of declaration is
sort of the smallest common denominator for the shells. Chapter
Window Hierarchies shows a csh example with different
window declarations that partially are made directly, similar tosh
scripts.

28 Finesse User’s Guide

Text fields In situations similar to that in the previous section where window
input is restricted to just a few values, an option menu will be the
favored widget. Input can be minimized to a mouse click.
Incorrect typing as a source of input errors is ruled out. When
input consists of entering text, usually any value can be given. In
this case, a text widget is the appropriate solution. Figure 8, asks
for the user's name, as shown in Figure 8, to welcome him with a
modification of the “Hello World” example in a second window.

Figure 8 hello_name1 script

Figure 9 Entering text

#! /bin/sh

. ${FINESSEPATH-/usr/local/finesse}/fsshinit

windef="
FsWindow -btype o;
FsLabel -label 'Please enter your name:';
FsText -label Name: -var name;
FsSeparator;" #(0)

Fsopen

Fsdisplay -w "$windef" -m "Hello!" #window 1

Fsdisplay -w "FsWindow -btype o;"\
 -m "Hello $name" #window 2

Fsclose

User guide 29

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

Labels and texts

The window declaration contains two widgets that have not been
used so far:

• FsLabel to write text, notes, etc. to the window

• FsText with labeled text widget to receive user input

The widget FsLabel does not allow user interaction. Its only
argument is -label to specify the label text. The value of the
-label keyword consists of several words separated by blanks
and surrounded by single quotes.

FsText needs the -var argument as a minimum requirement to
declare the shell variable receiving the text input, because user
input that cannot be returned to the shell script is useless.
Optionally with the -label argument you can label the text
widget. If the label specification is missing the variable name will
be set as the label.

To simplify input, the following additional commands help to
move and to edit in the text widget:

Exit status of Finesse commands

Similar to most UNIX commands, Finesse commands return an
exit status that can be checked by the status variable $? in the
Bourne shell and $status in the C shell. Successful completion

Table 2 Movement and editing
commands

Key Function

ctrl-a Move to the beginning of the line

Mod1-b Move backward one word

Mod1-f Move forward one word

ctrl-d Delete next character

Mod1-d Delete next word

Mod1-delete Delete previous word

ctrl-e Move to the end of the line

ctrl-j Delete up to the beginning of the line

ctrl-k Delete up to the end of the line

ctrl-u Delete line

30 Finesse User’s Guide

of a Finesse command returns the value 0. For example, after the
OK button has been clicked, the Fsdisplay command returns 0
for its exit status if it has been able to open the declared window
and to return the variables correctly to the shell script.

Fsclose; exit 1

In the above example the statement closes the current Finesse
dialog and the shell script if the status value is different from 0.

User guide 31

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

Push buttons Example Figure 8 is expanded in example Figure 10, by requiring
that the user actually enters a name in the text widget before
confirming the input with OK. Otherwise a while loop in the shell
script keeps opening the window until either an entry is given or
the Abort button is pressed.

#! /bin/sh

. ${FINESSEPATH-/usr/local/finesse}/fsshinit
winnam=namewindow
windef="
FsWindow -btype oxa -name $winnam;
FsLabel -label 'Please enter your name:';
FsText -label Name: -var name;
FsSeparator;" # (0)

Fsopen

Fsdisplay -w "$windef" -m "Hello!" # (1)
if ["$fsbutton" != "o"] ; then
Fsclose; exit
fi

while [-z "$name"] # (2)
do
Fsdisplay -n $winnam -m "Name is missing..." # (3)
if ["$fsbutton" != "o"] ; then
Fsclose; exit
fi
done

Fsdisplay -w "FsWindow; FsPushButton -label \
 Goodbye;" -m "Hello $name" # (4)

Fsclose

Figure 10 sh/hello_name2

Predefined push buttons

The FsWindow declaration in the variable definition (0) of has the
argument -btype oxa. By means of -btype, predefined push
buttons can be put in the bottom region of the window (Figure 10).
Push buttons trigger a certain action.

32 Finesse User’s Guide

Figure 11 Text input with confirmation

With predefined push buttons the labels are fixed. For example:

o creates a button labeled OK

a creates a button labeled Abort

x generates empty space between adjacent push buttons

Apart from the label the action resulting from a click on the
predefined push button is also fixed. For example:

OK

will close the corresponding window and return the window
variable values to the shell script.

Abort

also will close the window, but variables are not returned in
this case.

How to declare your own push buttons

Declaring the widget FsPushButton allows you to generate
your own push buttons where features and actions can be defined
within certain limits. In the second window has a button labeled
Goodbye in the place of the OK button from the previous example.
Labeling of a self-defined push button is possible through the
command:

FsPushButton -label argument

If -label is missing, OK is the default value.

As the FsPushButton declaration of this window has no further
arguments, the window is closed by default similar to the OK
button. If the window had variables these would additionally be
delivered to the shell script.

User guide 33

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

Figure 12 Push button used in hello_name2

The fsbutton variable

To be able to distinguish in the shell script which button has been
pressed, the additional variable fsbutton will be set on
successful completion of the Fsdisplay command, i.e., if the exit
status is 0. The fsbutton value identifies the widget causing the
return. Currently, returning to the shell script by user interaction
is possible only through push buttons.

A predefined push button assigns the corresponding character of
the -btype call to fsbutton. By checking the fsbutton
variable for the value a, for example, you can decide whether the
Abort button has been clicked. A push button defined with
FsPushButton assigns the value of the -label argument to
fsbutton by default. The FsPushButton option -fsbutton
allows defining your own return values for the corresponding
push button. If the -label as well as the -fsbutton argument
are missing, fsbutton will get the return value OK.

Repeated window calls

 is a typical case of an application where user input is checked
before processing. When an error is detected the application
re-requests user input.

On closing the window with OK, which has been opened with
statement (1), statement (2) checks whether the string “$name”
has length zero. If the name variable is empty, the while loop
executes and reopens the window defined (1). The process is
repeated until the name variable has a non zero value or the script
is closed with Abort and subsequent Fsclose. The second
window will only be opened if a name has been given in the first
window.

34 Finesse User’s Guide

The same window can be opened repeatedly by adding the
argument -name name to its FsWindow declaration. The window
can then be referenced by Fsdisplay with the option -n name:

Fsdisplay -n name

In contrast to this, a repeated call of the form

Fsdisplay -w "windef"

with the same window definition would each time open a new
window looking like the previous one.

In a csh script line (2) of would have the form

while ("$name" == "")

A term like while (! $?name) would be incorrect, because on
OK, Fsdisplay actually sets the window variable name as a
shell variable, but without a value if the window entry is missing.

User guide 35

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

Radio and check
boxes

Figure 13 display from snack script

Radio boxes

 “Option menus” section on page 24 has already shown an
example for a user selection from a predefined menu. Radio boxes
are an alternative way to achieve selecting exactly one out of
several items. Figure 12 shows a hypothetical user interface for a
snack bar with terminal input that contains an example of a menu
with three options in its top part.

Whether you will use the option menu or the radio box depends
on the number of options and the window design (apart from
your personal preferences). Radio boxes have the advantage that
all the possible options are visible at once, whereas option menus
with an average number of options need less window space. With
a large number of options, use a list widget (FsList). shows the
shell script for the Figure 12 window. The keyword FsRadio
starts a radio box declaration. Following the keyword -items the
possible options are specified. As with option menus, the
keyword -var is followed by the name of the variable containing
the chosen option.

Finally, the keyword -inputsep defines the slash / as a
separator for the radio box items, since spaces are not applicable
as separators because of the option German Sausage.
#! /bin/sh

. ${FINESSEPATH-/usr/local/finesse}/fsshinit

36 Finesse User’s Guide

windef="
 FsWindow -btype oxa;

 FsLabel -label 'Your order:';

 FsRadio -items
 ’Hamburger/GermanSausage/FriedChicken'
 -var order=Hamburger
 -inputsep '/';

 FsSeparator;

 FsCheck -items 'French Fries/Salad/Ketchup/Mayo'
 -label With:
 -inputsep '/'
 -outputsep '/'
 -var with
 -nrows 2;

 FsText -label 'Number of Portions:'
 -var num=1
 -texttype int;

 FsSeparator;"

Fsopen -o 1 "$@"

Fsdisplay -w "$windef"

if ["$fsbutton" != "a"] ; then
echo Your order:
echo $order
echo with:
echo $with | tr '/' '\012'
sleep 5
fi

Fsclose

Figure 14 script snack

In a radio box you only can select one item. As soon as one of the
items is clicked “on”, any previously clicked item is set “off”. In
contrast to this a check box allows selecting any item
independently from all the others. The items of a check box can be
browsed like a checking list and can individually be set or not. The
bottom part of Figure 12 shows a check box where any add-on
combination is to choose. Visually you can distinguish a check box
from a radio box by its square indicators (instead of diamonds).

User guide 37

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

You specify a check box with FsCheck in . When specifying
variables, you can set several items as a default, which is different
from FsRadio.

Checking on text entries

 shows how to check user input in the shell script before
processing and how to recall it for correcting if necessary. In some
cases it is possible to execute the checking before closing the
window instead of in the shell script. In case of error the window
stays open; the echo window shows a message line containing the
incorrect entry and correction can take place immediately.

To allow the checking of entries Finesse needs information on
admissible input. In , for the text widget labeled “Number of
portions:” only integer entries greater than zero are valid.
Therefore, the FsText specification in the window declaration
contains the argument -texttype int[1,]. int only admits
integers as an entry, with optionally a + or - sign. The first number
in brackets gives a lower limit for the entry. A second number in
the bracket, after the comma, could set an upper limit for the
number of portions. Apart from int, there are several other
keywords to allow limited input only. For a complete listing of
options see the “FsSeparator” section on page 98.

Redirecting standard output

At the end the above script contains some echo commands that
summarize the orders. Their output, however, does not appear on
the terminal as usual but in the echo window itself. This standard
output redirection is a result of the -o 1 Fsopen option at the
beginning of the Finesse dialog. Option -o 1 redirects standard
output only, -o 2 standard error only, -o 3 standard output and
standard error. Thus it is possible to handle all input and output
of a shell script in Finesse windows. Redirection is done
automatically without any user interaction. Furthermore, it is
limited to the Finesse dialog between Fsopen and Fsclose, i.e.,
echo commands after Fsclose will appear in the terminal
window.

In csh type scripts options -o 2 and -o 3 are not different from
each other as this shell type does not support separate redirection
of standard output and standard error. Option 1 is different from
option 2 and 3 in that with 1, Finesse server error output is not
redirected to the echo window. This can be important especially in
cases where there are errors in the settings of X resources by
means of the -r Fsdisplay option (see chapter Setting X

38 Finesse User’s Guide

Resources). Furthermore, in csh scripts you have to make sure
with every command that standard output and standard error are
redirected to the echo window. This can be done by using the
Finesse environment variable $FSSTDOUTFILE. The callbacks
example in chapter Window States shows how to redirect
standard output in a csh script.

User guide 39

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

Lists Mainly lists are used to offer a choice out of a given lot of items.
List entries appear one below the other. The list is displayed in a
window segment that shows the complete list or parts of it via
scroll bar.

Selecting and displaying elements

Typically, list elements are defined through the value of the
-items option. Additionally, more items can be included through
resource files or when refreshing a list. The argument -nvisible
num determines how many items can be viewed at one time. The
-mode option value defines whether only one or several, even non
adjacent, items can be selected.

A list can be displayed inside the main window (default) or in a
separate window (-include no). In the latter case the main
window contains a composite widget that consists of a push
button on the left hand side and a text widget on the right hand
side. Clicking at the push button opens the separate list window.
After confirming your selection the items are transferred to the
text widget and separated by blanks. If several items can be
selected the text widget is insensitive. In this case the text widget
is only intended to be a help for orientation in the main window.
If, on the other hand, you have set -mode single, the values of
external lists can be set directly inside the text widget.

In an external list window all items can be selected and deselected
by two special push buttons. If there are more than one list, the
push button label, which is repeated at the top of the list window,
shows which of the external list windows belongs to a certain text
widget in the main window.

Items selected by a click are highlighted. You can deselect any
highlighted item by clicking it once again. By clicking while
pressing the ctrl key you can select any number of non adjacent list
entries.

Elements on a list are separated by the -inputsep option value
in the -items argument. Default are the separators space, tab,
and carriage return. This is the reason why usually the -items
option argument has to be surrounded by single quotes. When the
selected list items are returned, they are separated by the
-outputsep option value. This separator can be a single
character or a character string. The default is separation of the list
elements by a space.

40 Finesse User’s Guide

Example program

The kill_sleep script shows a list of processes connected with
the current terminal.
#

Figure 15 display from kill_sleep

Demo script for killing processes
For demo purposes two sleep processes
are created that may be safely killed

. ${FINESSEPATH-/usr/local/finesse}/fsshinit

generate two processes for killing
#

sleep 60 &
sleep 60 &

Declare window with list of processes
#

nl="
"
psitems="`ps`"

windef="
 FsWindow -name killwin -bdefault exit
 -title 'kill processes';
 FsSeparator;
 FsList -label Processes:
 -items '$psitems'
 -nvisible 5

User guide 41

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

 -mode multiple
 -inputsep '$nl'
 -outputsep '$nl'
 -var killlist
 -expert kill;
FsPushButton -label kill -fsbutton k
 -name kill;
FsPushButton -type x;
FsPushButton -label exit -nrows 1
 -name exit;"

Open server and display window
#

Fsdisplay -w "$windef" \
 -m "Select processes to kill:"

Kill selected processes
#

if ["$fsbutton" = "k" -a -n "$killlist"] ; then
 echo "$killlist" |
 awk '$1 !~ /PID/ {print $1}' |
 xargs kill
 sleep 5 # time to display kill message
fi
Fsclose

Figure 16 kill_sleep script

Default buttons

The default button of a window can be chosen by the FsWindow
option

-bdefault name

name designates the name of the push button activated by
pressing return inside the window. If the -bdefault option is
missing, the leftmost push button within the row that was the last
to be declared in the window definition is set as default. Setting a
default only has an effect when the window is opened for the first
time as the default button changes according to user input. In the
example above, exit is set as default button to make sure that
return after an erroneous selection does not create negative results.

Apart from the kill button, processes can be deleted by double
clicking in the list. The option -expert kill connects double
clicking with the push button named kill. So double clicking
activates the push button specified. If the -expert option is

42 Finesse User’s Guide

omitted, double clicking activates the default button of the
window, if it exists. In our example this would have been theexit
button.

Modyfying list entries

This list has been generated as an argument to the FsList
-items option by the command ps. The separator between items
is the new-line character specified in the shell variable nl. This
has the effect that each of the processes shown gets a line of its
own, similar to terminal output. Those processes that are
associated with selected lines are deleted by the kill command
on pushing the kill button. In order to get processes for the
purpose of testing the kill command without running into
problems, two background sleep processes have been created at
the beginning of the shell script.

A special property offered by a list is the possibility to change the
list while running an application. You want to be able to replace,
delete or insert any list item at any place. This is possible in
Finesse through additional keywords when refreshing the list
items with the Fsdisplay -v option. Table 3 gives syntax and
meaning for each of these keywords:

Table 3 Updating list elements

 value action

a[select] select list item a

*[select] select all list items

a[add] insert item a at the end of the list

a[delete] delete list item a

*[delete] delete all list items

a[addselect] insert and select item a

a[unselect] deselect list item a

*[unselect] deselect all list items

a[topinsert] insert item a at the top of the list

a[replace]b replace list item b by item a

a[after]b insert item a after list item b

a[before]b insert list item a before list item b

a insert item a if not existent and select it

User guide 43

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

A sequence of several items with the desired keywords can also be
a valid list variable value. Separator is again one of the characters
defined in -inputsep or the default.

 Examples

The command
Fsdisplay -n name -v 'list=tick[replace]tack/toe[select]'

replaces the list item tack by the element tick in the window
called name and at the same time selects the list item toe, if
-inputsep '/' has been set in the FsList declaration in
name.

The command
 Fsdisplay -n name -v 'list=*[delete] new[add]'

deletes all the current list items and includes the new item new.

44 Finesse User’s Guide

File selection generates a window containing the file selection widget
FsSelectionText shown in . You will typically use this widget
when a file name has to be given. The widget is composed of a
push button and a text widget where the file name can be entered.
On clicking the push button opens a file selection box where the
desired file can be selected by a mouse click. Confirming the file
selection in the selection box automatically transfers the file name
to the text widget.

#! /bin/csh

if (! $?FINESSEPATH) \
 set FINESSEPATH = /usr/local/finesse
source $FINESSEPATH/fscshinit

set tmpfile = /tmp/$$.tmp

Fsopen

cat << EOT > $tmpfile
FsWindow -title 'Example File Selection'
-btype oxxa ;
FsSeparator;
FsSelectionText -var filename
-label 'Select file:';
FsSeparator;
EOT

Fsdisplay -f $tmpfile
if ("$fsbutton" != "o") then
Fsclose
/bin/rm -f $tmpfile
exit 1
endif

Fssave

if ($filename != "") then
if (-f $filename) then
set longlist = `ls -l $filename`
Fsecho -r 3 -c 80 -t "Long listing of $filename"\:
Fsecho \ \ $longlist
else
Fsecho File not found.
endif
else
Fsecho No file selected.
endif
cat << EOT > $tmpfile
FsWindow -btype o;
FsSeparator;

User guide 45

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

EOT

Fsdisplay -m "OK to quit." < $tmpfile
/bin/rm -f $tmpfile

Fsclose

Figure 17 script file_selection

Figure 18 Display from file_selection

The echo window

The selected file name of will be used to create a long listing of the
file (2). This is passed as an argument to the Finesse command
Fsecho by way of a shell variable (3):

Fsecho \ \ $longglist

Figure 19 Output from file_selection script

Fsecho opens its own “message window” displaying its
arguments in the window similar to the UNIX echo command as
shown in . On repeated calls the arguments will be written into the
window one below the other.

46 Finesse User’s Guide

The echo window has an OK button to close the window any time.
In that case the current window contents will be cleared so that
subsequent Fsecho calls only display new messages.

You can use Fsecho to display the whole contents of a file as well.
The first Fsecho argument being -f, following arguments are
taken as file names and their contents are written into the echo
window:

Fsecho -f filename

Window description from a file

As an alternative way for transferring the window description,
the file selection example does the passing not by means of the -w
option but out of the file /tmp/$$.tmp. This will be achieved
either with the -f option, as in the first window (1),

Fsdisplay -f /tmp/$$.tmp

or redirecting the input, as in the second window (4):

Fsdisplay -m "OK to quit" < /tmp/$$.tmp

Interactive window description

If the Fsdisplay function in the shell script does not contain a
window description, you can give this description interactively
by terminal input. By this method special windows can be created
at runtime as Figure 20 shows.

Figure 20 my_window script

How to save window parameter settings

The Fssave command saves every window setting registered by
the application server so far to a resource file in the .finesse

#! /bin/sh

. ${FINESSEPATH-/usr/local/finesse}/fsshinit
Fsopen

Define window via terminal input
echo "Insert your window definition (^D to end):"
Fsdisplay -m "Here is what you defined:"

Fsclose

User guide 47

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

subdirectory of the home directory. The file name is composed
from the calling shell script name and the extension .rsc. For
example, if the shell script name is file_selection the
window settings are saved to the file file_selection.rsc.

Inside the resource file values are saved in the form

variable: value

Default settings when starting the application

Analogous to the saving of window settings, the default resource
file name on calling a shell script named xyz is the file xyz.rsc
in the .finesse subdirectory of the home directory, if a different
resource file has not been explicitly specified for searching and
reading. The last values saved are available to the application
server and are set as current values when the application is
restarted through the use of the file:

$HOME/.finesse/scriptname.rsc

48 Finesse User’s Guide

Window states In all our previous examples the Fsdisplay command not only
had to pass the window declaration to the Finesse server but also
had to wait for the confirmation of window entries and return
them as shell variables to the shell script. Further processing of the
shell script had been interrupted until necessary input had been
entered and the window could be closed again.

In some cases, though, displaying a window does not need any
user input or confirmation, for example, when some information
is to be displayed graphically. shows such a situation: the shell
script counts up all natural numbers one at a second, checks for
indivisibility, and shows the number and the checking result in
the window in .

#! /bin/sh
#
. ${FINESSEPATH-/usr/local/finesse}/fsshinit
#
Extend path for SunOS 4.x and Linux
#
PATH=$PATH:/usr/games

Definition

i=1; yesno=No
windef="
 FsWindow -name primewin;
 FsSeparator;
 FsText -label Number:
 -var number==$i;
 FsRadio -label Prime:
 -var prime==$yesno
 -items 'Yes No';"

Test

test_prime() {
 test_eq $1 `factor $1`
}
test_eq() {
 if [-z "$3"] ; then
 echo Yes
 elif ["$1" -eq "$3"] ; then
 echo Yes
 else
 echo No
 fi
}

Update

User guide 49

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

Fsopen "$@"
while :
do
 Fsdisplay -w "$windef" -n primewin -s touch \
 -v number=$i -v prime=$yesno
 if ["$fsbutton" = "a"] ; then
 break
 fi
 sleep 1
 i=`expr $i + 1`
 yesno=`test_prime $i`
done
Fsclose

Figure 21 sh/display_primes

Figure 22 Automatic window update

Number and checking result are displayed by repeatedly calling
the window with the Fsdisplay command:

Fsdisplay -w "$windef" -n primewin -s touch\
 -v zahl=$i -v prime=$yesno

The command contains the -w as well as the -n option. In these
cases first the window named in the -n option is looked up. If
existing, this window is displayed, otherwise the -w option
definition is used to create the window. In our example, on the
first call the $windef definition is read because so far there is no
window named primewin. Subsequent Fsdisplay calls ignore
the -w command line option and refer directly to the window
named primewin created during the first call.

Window states

A Finesse window always is in one of three possible states:input,
close, or touch. For a window newly generated by a

50 Finesse User’s Guide

Fsdisplay call, the default state is input, and the window will
be waiting for user interaction. Window states can change
through Fsdisplay calls or with certain buttons. For example,
clicking the OK button in the “Hello World” example changes
the window state to close. The touch state keeps the window
open but will not allow any input.

A window can be transferred from one possible state to any other.
This can be done by means of the Fsdisplay command or of
push buttons. The Fsdisplay command allows setting a
window state by the -s option, push buttons by the -winstat
option shown in Figure 23.

All the same, changing the state input by the Fsdisplay
command is impossible, as the window is waiting for user
interaction and disabling further shell script commands during
this time. Vice versa, state changing by push buttons is possible in
the input state only. An Fsdisplay call without an -s argument
puts the corresponding window to state input.

In the example above, the window is called repeatedly in touch
state. In this way the window is opened but immediately left
again. The window does not admit any user input, which is
symbolized by the one-way sign mouse cursor and shadowing of
the window. Calling a window in touch state allows immediate
execution of subsequent commands, for example, repeatedly
refreshing window entries.

Refreshing window entries

Refreshing window entries is triggered by the Fsdisplay -v
option. The argument is the variable to modify, followed by its
new value. This is specified with the same format as in the
window declaration:

name=value

Fsdisplay can have several arguments to modify different
window entries in one call.

Priority of window settings

So far in our examples we have presented several possibilities to
set window parameters: by simple (=) or by absolute (==) variable
assignment in the window declaration, by the Fsdisplay -v
option, or by means of the resource file. Absolute variable settings
in the window declaration have the highest priority. They serve to
set values appearing as a default every time the application is

User guide 51

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

called. If a variable does not have an absolute setting in the
window declaration, Finesse will search for a -v option variable
assignment. If that is missing as well, the resource file entry has
the next priority. A simple variable setting in the window
declaration has lowest priority. Lacking this one, too, a default
value will be assumed.

52 Finesse User’s Guide

Window
hierarchies

Our previous example has shown how to modify window entries
from the shell script with the help of the Fsdisplay command
state modification. The following shell script demonstrates the
possibilities to change window states by push buttons:

#! /bin/csh
#
if (! $?FINESSEPATH) set FINESSEPATH =
/usr/local/finesse
source $FINESSEPATH/fscshinit

Fsopen -o 1

csh window definition syntax depending on
operating system

if ("`uname`" == "SCO_SV") then
 echo "csh not supported. Use 'tcsh' or convert to
'sh'."
 exit 1
else if ("`uname`" == "OSF1") then
 set a = "FsWindow -name callback "
 set aa = "-title 'Example Shell Callback';"
 set b = "FsPushButton -label Button1 "
 set ba = "-fsbutton b1 -winstat touch;"
 set c = "FsPushButton -label Button2 "
 set ca = "-fsbutton b2 -winstat touch;"
 set d = "FsPushButton -label Button3 "
 set da = "-fsbutton b3 -winstat touch;"
 set e = "FsPushButton -label Button4 "
 set ea = "-fsbutton b4 -winstat touch -nrows 2;"
 set f = "FsRadio -items '1 2 3' -var num=1 "
 set fa = "-fsbutton 123 -winstat touch;"
 set g = "FsRadio -items '3 6 9' -var enum=3 "
 set ga = "-label 'times 3' -fsbutton 369 -winstat
touch;"
 set windef = "aaa bba cca dda eea ffa
gga"
else
 set windef = "\
 FsWindow -name callback -title 'Example Shell
Callback';\
 FsPushButton -label Button1 -fsbutton b1 -winstat
touch;\
 FsPushButton -label Button2 -fsbutton b2 -winstat
touch;\
 FsPushButton -label Button3 -fsbutton b3 -winstat
touch;\
 FsPushButton -label Button4 -fsbutton b4 -winstat
touch\
 -nrows 2;\

User guide 53

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

 FsRadio -items '1 2 3' -var num=1\
 -fsbutton 123 -winstat touch ;\
 FsRadio -items '3 6 9' -var enum=3\
 -label 'times 3' -fsbutton 369 -winstat
touch;"
endif

if ("`uname`" == "AIX" && "`uname -v`" == "4") then
 set windefx = ($windef:x)
 Fsdisplay -w "$windefx" -m "Push Callback Button:"
else
 Fsdisplay -w $windef:q -m "Push Callback Button:"
endif

while (1)
 switch ($fsbutton)
 case b[1-4]:
 set sub = "FsWindow -name s$fsbutton -btype o;"
 echo Shell callback $fsbutton... > $FSSTDOUTFILE
 Fsdisplay -w "$sub" -n s$fsbutton\
 -m "Displaying subwindow $fsbutton..."
 breaksw
 case o:
 Fsdisplay -n callback
 breaksw
 case 123:
 set enum = `expr $num * 3`
 echo Shell callback $fsbutton... > $FSSTDOUTFILE
 Fsdisplay -n callback -v enum=$enum
 breaksw
 case 369:
 set num = `expr $enum / 3`
 echo Shell callback $fsbutton... > $FSSTDOUTFILE
 Fsdisplay -n callback -v num=$num
 breaksw
 default:
 break
 endsw
end

Fsclose

Figure 23callbacks script

Platform dependent window definitions using csh

Before we can describe shell callbacks we want to talk about the
platform dependent window declaration of this csh script.
Excepting the SCO Open Server whose C shell has no built-in eval
command and therefore isn't supported we have to differentiate

54 Finesse User’s Guide

between three cases. The first decision concerns DEC OSF1
(Digital Unix) where the window declaration, as previously
shown, has to be in one long line without any <NEWLINE>
characters. For all other platforms the window declaration of
example 10.1 can be written directly to a variable (windef),
similar to sh scripts. The declaration, however, stretching over
several lines, has to continue with a backslash \, which is not very
nice but ever-present in the C shell, as the C shell admits double
quotes (") in one line only. Surrounded by double quotes, the
string \<NEWLINE> is converted to a real <NEWLINE>
character, i.e., this <NEWLINE> character stays in the windef
declaration. So subsequent windef referencing with "$windef"
would again cause a syntax error. On the other hand the -w option
argument has to be transferred as one single argument when
calling Fsdisplay. With the exception of AIX-4.1 this dilemma can
be solved by using the C shell :q modifier that skips the " " syntax
check but all the same puts $windef in double quotes. With
AIX-4.1 the window declaration first has to be saved to a ++ word
list ++ as a contiguous character string. Otherwise it would be
separated into its arguments at the <NEWLINE> characters when
handed over to Fsdisplay and so cause a syntax error.

Shell callbacks

The example is the prototype of a window where certain
actionsare executed in the shell script without closing the window,
according to the button clicked. So multiple connections between
widgets can be realized. Similar to X-window terminology these
actions can be termed "shell callbacks". Shell callbacks can be
linked to push buttons as well as to menu fields FsRadio,
FsCheck, and FsOptionMenu. The main window consists of
four push buttons displayed in two rows by means of the -nrows
option (Figure 23) and two radio menus. Each one of the elements
has the option -winstat touch which means that on clicking
this button the window is set to the touch state and the
corresponding Fsdisplay command returns to the shell script.
Here, according to the button, a certain message is written to the
echo window and the corresponding action is executed. In the
case of FsPushButton a subwindow will open, in the case of a
radio menu the other one will be modified. In the first case the
main window is reactivated on pushing OK, in the second case this
happens at once. After that further callbacks can be started, or the
loop can be exited via window decoration by the default switch.

Widgets with the option -winstat touch on activating return
to the shell script. Window values are returned or not according to
the -data option. FsPushButton widgets return the value set in

User guide 55

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

the -fsbutton variable, otherwise the button label. If the
-fsbutton option has been set with a menu, the variable
fsbutton contains the corresponding value when returning.
Otherwise the label of the menu field concerned is returned in the
variable fsbutton. So in the script you can check flexibly either
the menu or a single menu field.

Figure 24Window hierarchy used in the callback script

Window hierarchy

Any action may be executed as a shell callback. In our example a
message is written to the echo window to show which push
button has been clicked. Additionally a second window will open.
This, too, could contain push buttons triggering shell callbacks
and opening more windows, and so on. By the -winstat option
a complete window hierarchy can be built as seen in Figure 23.
Only one of these windows can be sensitive at a given time,
typically the lowest one in the window hierarchy. The ability to
build a window hierarchy is useful for designing submenus of a
main window.

56 Finesse User’s Guide

Modality of dialogs

Opening a submenu by one of the FsPushButton fields causes the
input focus to change to this window. Typically, a Finesse dialog
is modal, i.e. usually one and only one of the windows shown
possesses the input focus, and only there user input is possible.
This quality reflects the sequential course of scripts in the window
dialog and makes possible programming the user dialog in the
script in a simple and structured way. Windows are signaled
inactive by a one-way cursor. Interaction with an inactive window
is limited; in particular, you cannot return to the shell script from
an inactive window. There are exceptions from modality: these
are, for one part, the echo window and save window for saving
variables. All the time both of these windows are accessible, i.e.
input sensitive, independent of other windows. They can be
closed anytime, for example. For the other part, external list
windows and file selection windows are not modal. These
windows can be called simultaneously and more than once from
the main input window. Input in those windows can be made at
the same time as in the main input window. When the main
window is inactive or closed, the corresponding list and file
selection windows are inactive or closed as well.

User guide 57

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

Finesse resources Figure 25 shows the beginning of a rather long shell script named
aba up to calling the first window aba1, Figure 25. With an
additional Fsclose command at the end, this example can be
completed to an entire Finesse script.

Figure 25 aba script segment

#! /bin/sh
#
Shell script aba
#
. ${FINESSEPATH-/usr/local/finesse}/fsshinit

Fsopen "$@"

aba1="
 FsWindow -name aba1
 -title Aba1
 -btype osa;
 FsSeparator;
 FsOptionMenu -label 'Select program type:'
 -items 'analyse restart postout
postfile savedata'
 -var progtype=analyse;
 FsSeparator;
 FsSelectionText -var inputfile
 -label 'Input File:';
 FsSeparator;
 FsText -var projectno
 -label 'Project Number:';
 FsText -var timelimit
 -label 'Time limit (Min):';
 FsText -var memory
 -label 'Memory (Mb):';
 FsSeparator;"

Fsdisplay -w "$aba1"
.
.
.

58 Finesse User’s Guide

Figure 26Window output from aba script

Finesse resources

The file_selection script has shown that current window
parameter settings registered in the application server () can be
saved as Finesse resources by the Fssave command to a Finesse
resource file. A Finesse resource file will be read every time the
Fsdisplay command is called. Thus the window parameter
settings saved from a previous application call can be set
automatically on restarting the application.

The Finesse resources are saved to a file in the $HOME/.finesse
directory by default. The file name is composed of the calling shell
script name and the extension .rsc.

The Finesse resources are defined using the format:

variable: value

 On one side, the Fssave call saves every window variable with
its current value registered in the Finesse server at this moment. A
window variable is registered if its associated window has been
opened at least once by a Fsdisplay call.

On the other side, window declarations can contain several more
variable definitions apart from those defined with the -var
option. These variables will be saved as well if their values can be
modified by the user. For example, if the argument to the
-dirmask option of FsSelectionText has the form
varname=value, the varname variable is saved together with its

User guide 59

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

current value. On the other hand, the variable that can be assigned
to a label in a FsLabel declaration will not be saved because this
label can be modified only by the shell script, but not by the user.

Finally the new resource file will take over without modification
all those variable/value pairs that have not been registered in the
Finesse server so far by a window call. This grants that, for
example, Finesse resources from sub windows not opened in the
current application will be saved.

Saving Finesse resources to any file

Saving window parameter settings by the Fssave command in
the shell script is automatic. However, it is possible for users to
save resources in runtime to a file with any name in any directory.
When calling the window that shall handle the back up, one more
field labeled Save as ... must be created. Our example does
this with the FsWindow argument -btype osa where the letter
s is the reason for the extra field between OK and Abort. Clicking
at Save as ... will open a file selection window where you can
choose or enter the desired resource file as shown in Figure 25.
Pressing OK in the file selection window writes the variable/value
pairs registered in the application server to the selected file.

Reading any Finesse resource file

Usually Finesse resources saved in any file can be read with the
command line when the user starts the program. For example, the
command

scriptname -r resourcefile

specifies a resource file named resourcefile for the script
named scriptname. The -r option gives the opportunity to
comfortably choose one out of different window settings
irrespective of the .rsc file.

60 Finesse User’s Guide

Figure 27 File selection box screen

If the -r option is used when calling the script, the selected file is
searched for and read instead of the .rsc file. If the selected
resource file can't be found, the .rsc file connected with the shell
script name will be looked up and read.

Fsopen can read the specified file only if it is passed the option
-r resourcefile. That is the reason Fsopen carries the "$@"
argument containing the command parameters. If the $@ variable
does not contain the command parameters any more (for
example, because of a shift command issued in the meantime), the
command parameters have to be saved to be passed to the Fsopen
command correctly. Calling Fsopen before changing any

User guide 61

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

command parameters is essentially advisable. In an sh script the
Fsopen command generally should contain the "$@" option.

In an csh script the list of arguments is available in the predefined
shell variable argv. Argv usually will not be modified in the
course of a shell script. Therefore in a csh-script Fsopen directly
evaluates the command parameters with argv so that Fsopen
does not need any transfer arguments. If for some reason argv
should be modified before calling Fsopen, similarly to the sh
script method, the command parameters have to be saved and
then passed to Fsopen explicitly.

62 Finesse User’s Guide

Container widgets The examples in previous chapters are characterized by a simple
widget arrangement: the widgets declared in one window
definition are grouped one below the other. This vertical widget
grouping is sufficient as a default for many of the smaller
windows. There is a problem, however, with windows containing
many widgets. Furthermore, it is often desirable for logical or
ergonomic reasons to arrange certain widgets beside each other or
to pool a group of widgets in an appropriate way.

Nastran script

#! /bin/sh
#
Create simple front end for nastran jobs
--
#
Use some NASTRAN Info
#----------------------

NAST_VER=”68”
NAST_RC=”nast${NAST_VER}rc”
EXE_NAME=”NAST${NAST_VER}r2”

Finesse Initialization

. ${FINESSEPATH-/usr/local/finesse}/fsshinit# Declare
input window

yes=Yes
no=No

jidname=”Input File”
rcfname=”RC File”
sdiname=”Scratch Directory”

naswin=”
 FsWindow -name naswin
 -title Finesse;
 FsSelectionText -label ‘$jidname:’
 -var jid;
 FsSelectionText -label ‘$rcfname:’
 -var rcf=$NAST_RC;

 FsSeparator -name separator;

 FsForm -name form1 -orientation horizontal;
 FsForm -name form2 -parent form1;
 FsList -label ‘$sdiname:’

User guide 63

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

 -items ‘/net/ws1/scr
 /net/filesrv1/scr/scr1
 /net/filesrv1/scr/scr2
 /net/filesrv2/scr/scr1
 /net/filesrv2/scr/scr1’
 -var sdi=/net/filesrv1/scr/scr1
 -parent form2 -nvisible 4;

 FsSeparator -parent form2 -line no
 -name separator1;

 FsText -label ‘Total Memory (MB):’
 -var mem=50 -parent form2
 -name text1 -packing tight;

 FsText -label ‘Scratch Memory (MB):’
 -var smem=50 -parent form2
 -name text2 -packing tight;

 FsSeparator -name midsep -line dashed
 -parent form1;

 FsForm -name form3 -parent form1;

 FsRadio -label ‘Batch Job:’
 -items ‘$yes $no’ -name radio
 -var bat=$yes -parent form3;

 FsRadio -label ‘Delete Scratch:’
 -items ‘$yes $no’ -name radio
 -var scr=$yes -parent form3;

 FsRadio -label ‘Notify when job is done:’
 -items ‘$yes $no’ -name radio
 -var not=$no -parent form3;

 FsRadio -label ‘Save old files:’
 -items ‘$yes $no’ -name radio
 -var old=$yes -parent form3;

 FsSeparator -name separator;

 FsPushButton -label ‘Start Job’;
 FsPushButton -label ‘Job status’;
 FsPushButton -label Exit;
“

Plausibility checks:

Test filenames. $1: variable; $2: name

64 Finesse User’s Guide

testname()
{
 if [! -z “$1”] ; then
 return 0; # correct
 else
 mesg=”$2 missing...”
 return 1; # erroneous
 fi
}
Test Memory
$1: value; $2: lower limit; $3: upper limit

testmem()
{
if [-z “$1”] ; then
 mesg=”No Memory given...”; return 1;
else
 var=‘expr $1 : ‘.*\([^0-9]\).*’‘
 if [-z “$var”] ; then
 if [$1 -lt $2] ; then
 mesg=”$1<$2: Memory too small...”;
 return 1; fi
 if [$1 -gt $3] ; then
 mesg=”$1>$3: Memory too large...”;
 return 1; fi
 return 0;
 else
 mesg=”Bad memory value...”; return 1;
 fi
fi
}

Begin Finesse dialog, open input window

Fsopen “$@”

Fsdisplay -w “$naswin” -m “Nastran Input”if [“$fsbutton” !=
“o”] ; then
 Fsclose; exit 0; fi

Check variables, on error reopen window
#--

memlower=10
smemlower=10
memupper=100
smemupper=100

until testname “$jid” “$jidname” &&
 testname “$rcf” “$rcfname” &&

User guide 65

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

 testname “$sdi” “$sdiname” &&
 testmem $mem $memlower $memupper &&
 testmem $smem $smemlower $smemupper
do
 Fsdisplay -n naswin -m “$mesg”
 if [“$fsbutton” != “o”] ; then
 Fsclose; exit 0; fi
done

Fssave

OK, start job

...
$EXE_NAME jid=$jid rcf=$rcf sdi=$sdi\ mem=$mem
smem=$smem bat=$bat scr=$scr\
 not=$not prt=$prt old=$old
...

Fsclose

Figure 28 nastran script

The nastran script generates a simple input window for a Finite
Elements Package as shown in Figure 28. Two horizontal
separators split the window in three parts. The middle part
contains widgets that are arranged beside each other. At the left
side you see a group of widgets consisting of a list as well as two
text widgets. On the right side there is a group of Yes/No check
buttons.

Inside any container element the default is again a vertical
arrangement, so the radio buttons, as well as list and text widgets,
appear one below the other on their respective sides. If you want
to create a horizontal arrangement you have to add the option
-orientation horizontal to FsForm. In our example we
have set this option for the container element form1 to arrange
the container element form2 at the side of form3. Both of these
two elements are contained in form1, which shows that container
elements can be nested, i.e. contained in other container elements.

Widget grouping is made possible by the FsForm widget. This
container element enables you to design your windows in a very
flexible way. It does not appear on the screen, but serves for taking
in and grouping other widgets. The argument -parent name
assigns a widget to a given container element, where name is the
container element name given by the FsForm -name option. For
example, the four radio buttons are assigned to the FsForm
element form3 by the -parent form3 option; the list and the
text widgets below are assigned to the container element form2.

66 Finesse User’s Guide

Figure 29 nastran input window

The element FsWindow, which is present in every window
definition, is also one of these container elements. It has to take in
every widget not explicitly assigned to another container element
and therefore is the default parent window. Another default is that
its widgets are aligned vertically. As for FsForm, also for
FsWindow you can change the alignment by the argument
-orientation horizontal.

The -packing option defines the size of widgets inside the
window. The default value for container widgets is tight. Thus
every widget is assigned the smallest possible size. By contrast,
every other widget with the -packing option has a default value
of equal. This means that label and actual text widget have the
same size, e.g. for FsText widgets. Internally, these widgets
again consist of a container with additional elements contained
inside.

You can also arrange widgets in an array with the help of FsForm
and FsWindow elements. The number of rows (when oriented
horizontally) or of columns (when oriented vertically) can be
specified by the -nrows option. This only works if you have set
the -packing option to equal because this is necessary to
arrange array elements homogeneously. By giving the -spacing

User guide 67

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

option, you can additionally define the horizontal and vertical
distance between widgets.

Setting X
resources

Sometimes arranging widgets by means of FsForm in various
ways is not sufficient to give your windows the desired
appearance. Without any specific control, widgets will get a size
by default, for example, determined by contents or labels. This
size cannot be changed in the window declaration. On the other
hand, the resource mechanism of the X window system gives you
the opportunity to set freely many properties of X applications,
such as widget size or color. To this end the desired properties or
resources of X applications are defined according to certain rules
in order to let them take effect on starting the application.
Although Finesse applications are shell scripts in the first place,
Finesse fairly supports all of these possibilities in the usual way of
X applications. First the programmer sets properties or resources
when developing the application, but any user may change many
or even all of the resources, depending on the application, to meet
individual needs.

X resources can be defined at many places: by using the command
line, inside the application, in certain files in user directories or in
the X11 directory tree, in files specified by environment variables,
or inside shell scripts. Finesse uses or supports all these
possibilities to set X resources from the outside. As a complete
discussion is impossible here, we restrict ourselves to giving
several useful suggestions for the application programmer of how
to set resource defaults and some hints concerning special features
of Finesse scripts. A fully detailed discussion of all sources for
setting resources and their order of priority can be found in the X
Window System User’s Guide or OSF/Motif User’s Guide.

Syntax of resource settings

Any application consists of single widgets structured
hierarchically and each having a number of resources to set. Every
resource, every widget and also every application has an instance
name as well as a class name. The instance name serves for
characterizing individually each of these widgets. The class name
specifies the general category to which the widget belongs. To be
able to assign a value to a specific resource in a specified widget of
an application all necessary names have to be given when
specifying the resources.

A resource specification generally consists of several components
in the following format:

68 Finesse User’s Guide

application*widget_hierarchy*resource: value

The component names can be either instance names, or class
names, or any combination of both. The widget hierarchy can
consist of one or several widget names, and is optional, same as
the application name. If the window hierarchy is not given, the
resource concerned will be set for all appropriate widgets. If the
application name is missing, the resource concerned will be set for
all appropriate applications. An asterisk * separating two of the
components or widgets means that this resource is valid also for
all appropriate widgets or hierarchy levels in between. So not the
entire order of hierarchy must be given.

A little example helps to visualize the range affected by resource
settings:

*background: DarkGreen
nastran*background: MidnightBlue
*mytextfield*font: -adobe-helvetica-bold-r-normal--20-*iso8859-1

The first two lines specify the resource background. The widget
hierarchy in the first line is missing, so the resource is used for all
widgets and all applications. This means that everywhere the
background color is set to DarkGreen. The file
/usr/lib/X11/rgb.txt contains a list of predefined colors and their
RGB values. In the second line the resource background is
specified in detail for the application nastran. Because of the
asterisk * between nastran and background, this resource is
set for all widgets of the application which makes
MidnightBlue the global background color. The last entry sets a
Helvetica font with 24 pt size, which is much larger than the
default, for widgets named mytextfield of all applications. The
xlsfonts command produces a list of possible fonts and their
exact names.

Instance names and class names of widgets

All Finesse windows and also various Finesse widgets themselves
are structured hierarchically. For example, FsForm widgets
contain other widgets, and a FsText widget is composed
internally of three widgets belonging to two different levels. By
specifying the window hierarchy accordingly, a resource can be
restricted to some widgets or applied to a whole group of widgets.
The following table shows the window hierarchy of all Finesse
widgets and the corresponding class and instance names.

The table is subdivided in blocks. Each block describes the widget
hierarchy of the widget specified in the corresponding heading.
For example, if you create the widget FsText, internally one

User guide 69

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

widget of the XmRowColumn class, one widget of the XmLabel
class, and one widget of the XmText class are generated. The
number of asterisks in front of the class name describes the depth
of the hierarchy below the parent widget. Inside of one block, the
widgets of one hierarchy level are children of the parent widget
immediately above. For example, in an echo window two widgets
of theXmScrollBar class and one widget of theXmText class are
children of a widget of the XmScrolledWindow class. A number
in square brackets means that the element maybe referenced by
this number for resource specifications with the -r option of
Fsdisplay.

Table 4 Class and instance names of Finesse widgets

Hierarchy Class name Instance name

FsWindow widget

* TopLevelShell name else FsWindow

** XmForm name else FsWindow

*** XmRowColumn name else FsWindow

FsForm widget

*[0] XmForm name

**[1] XmRowColumn name

Echo Window

* TopLevelShell Echo

** XmForm Echo

*** XmScrolledWindow EchoSW

**** XmScrollBar HorScrollBar

**** XmScrollBar VertScrollBar

**** XmText Echo

*** XmPushButton Echo

Info label

* [0] XmLabel Info

FsLabel widget

* [0] XmLabel name else FsLabel

FsText widget

70 Finesse User’s Guide

* [1] XmRowColumn name else FsText

**[2] XmLabel name else FsText

**[0] XmText name else FsText

FsSelectionText widget

*[1] XmRowColumn name else FsSelectionText

**[2] XmPushButton name else FsSelectionText

**[0] XmText name else FsSelectionText

FsRadio widget

* [1] XmRowColumn name else FsRadio

**[2] XmLabel name else FsRadio

** [0] XmRowColumn name else FsRadio

*** [3...] XmToggleButton label

FsCheck widget

* [1] XmRowColumn name else FsCheck

**[2] XmLabel name else FsCheck

** [0] XmRowColumn name else FsCheck

*** [3...] XmToggleButton label

FsOptionMenu widget

*[1] XmRowColumn name else FsOptionMenu

**[0] XmRowColumn name else FsOptionMenu

***[2] XmLabelGadget OptionLabel

***[3] XmCascadeButtonGadget OptionButto

** XmMenuShell popup_name else popup_FsOptionMenu

*** [4] XmRowColumn name else FsOptionMenu

****[5...] XmPushButton label

Sequence of push buttons

* XmRowColumn name von FsWindow else FsWindow

** [0] XmPushButton name else FsPushButton

Sequence of push buttons from -type option

Table 4 Class and instance names of Finesse widgets

Hierarchy Class name Instance name

User guide 71

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

* XmRowColumn name von FsWindow else FsWindow

** XmPushButton name von FsWindow else FsWindow

FsSeparator widget

* [0] XmSeparator name else FsSeparator

FsList widget when list included

*[4] XmRowColumn name else FsList

**[5] XmLabel name else FsList

**[6] XmScrolledWindow nameSW else FsListSW

*** [8] XmScrollBar VertScrollBar

***[10] XmList name else FsList

FsList widget in main window when list not included

*[1] XmRowColumn name else FsList

** [2] XmPushButton name else FsList

**[3] XmText name else FsList

FsList window when list not included

* TopLevelShell name else FsList

** XmForm name else FsList

***[4] XmRowColumn name else FsList

****[5] XmLabel name else FsList

**** [6] XmScrolledWindow name else FsListSW

*****[8] XmScrollBar VertScrollBar

*****[0] XmList name else FsList

**** XmRowColumn name else FsList

***** XmPushButton name else FsList

***** XmPushButton name else FsList

**** XmSeparator name else FsList

**** XmRowColumn name else FsList

***** XmPushButton name else FsList

***** XmPushButton name else FsList

***** XmPushButton name else FsList

Table 4 Class and instance names of Finesse widgets

Hierarchy Class name Instance name

72 Finesse User’s Guide

File selection box for saving Finesse variables

* TopLevelShell Save

** XmFileSelectionBox Save

*** XmLabelGadget Items

*** XmScrolledWindow ItemsListSW

**** XmScrollBar VertScrollBar

**** XmScrollBar HorScrollBar

**** XmList ItemsList

*** XmLabelGadget Selection

*** XmTextField Text

*** XmSeparatorGadget Separator

*** XmPushButtonGadget OK

*** XmPushButtonGadget Apply

*** XmPushButtonGadget Cancel

*** XmPushButtonGadget Help

*** XmLabelGadget FilterLabel

*** XmLabelGadget Dir

*** XmTextField FilterText

*** XmScrolledWindow DirListSW

**** XmScrollBar VertScrollBar

**** XmScrollBar HorScrollBar

**** XmList DirList

File selection box of FsSelectionText widget

* TopLevelShell name else FsSelectionText

** XmFileSelectionBox name else FsSelectionText

*** XmLabelGadget Items

*** XmScrolledWindow ItemsListSW

**** XmScrollBar VertScrollBar

**** XmScrollBar HorScrollBar

Table 4 Class and instance names of Finesse widgets

Hierarchy Class name Instance name

User guide 73

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

Setting resources in Finesse windows

Using some resources of the nastran example, Figure 28 shows
how you can set resources in Finesse windows with the help of the
table. The file examples/app-defaults/Nastran with the
resource list is shown below.

*background: Gray75
*foreground: Black
*Info*background: Cyan4
*Info*foreground: White
*XmList*background: AntiqueWhite
*XmPushButton*background: SteelBlue
*XmPushButton*foreground: White
*XmText*background: AntiqueWhite
*XmToggleButton*selectColor: Yellow
*radio*XmLabel*background: SteelBlue
*radio*XmLabel*foreground: White
*midsep*orientation: XmVERTICAL
*midsep*width: 50
*separator1*height: 50

**** XmList ItemsList

*** XmLabelGadget Selection

*** XmTextField Text

*** XmSeparatorGadget Separator

*** XmPushButtonGadget OK

*** XmPushButtonGadget Apply

*** XmPushButtonGadget Cancel

*** XmPushButtonGadget Help

*** XmLabelGadget FilterLabel

*** XmLabelGadget Dir

*** XmTextField FilterText

*** XmScrolledWindow DirListSW

**** XmScrollBar VertScrollBar

**** XmScrollBar HorScrollBar

**** XmList DirList

Table 4 Class and instance names of Finesse widgets

Hierarchy Class name Instance name

74 Finesse User’s Guide

*separator*height: 25
*FsOptionMenu*XmLabelGadget*width: 200
*FsEcho*XmPushButton*width: 100
*XmPushButton*width: 173
*text1*XmLabel*width: 180
*text1*XmText*width: 120
*text2*XmLabel*width: 180
*text2*XmText*width: 120
*XmText*width: 280

The file starts with two entries specifying foreground and
background color. As the entries don’t contain a widget hierarchy
these resources are valid for all the widgets of this application. For
some of the widgets these settings are modified by later entries.
For example, the widgets of the Info class will not follow the
generic rules since they have been specified with more specific
definitions. From the table of the previous paragraph and the
-name arguments of the window declaration we know that apart
from the Info label there are no widgets with class name or
instance name Info. Therefore these two resources set the colors
exclusively for the Info widget.

The situation is different for the XmPushButton class colors set
later on. Here, too, only the class name is given as a hierarchy,
surrounded by two asterisks. So this resource is valid for all
widgets of the XmPushButton class on all levels. This setting
affects the push buttons in the FsSelectionText widget as
well as the push buttons at the bottom of the window.

Finally by setting the resources

*radio*XmLabel*background: SteelBlue
*radio*XmLabel*foreground: White

also, the label colors for the radio switches are set to SteelBlue
and White. The hierarchy in this case is given by the instance
name radio defined by the -name option of FsRadio and the
class name XmLabel. From the , it is seen that the widget specified
by radio belongs to the XmRowColumn class. If instead of radio
the class name had been chosen, theFsText widget labels and the
list labels would get the same colors, because these widgets, too,
have the same two-level hierarchy order.

The file contains some more entries, which refer to the orientation
of the middle separating line and to width and height
specifications. The selection of appropriate widgets is made the
same way as for the color settings. The manual pages for a given
X class name (e.g., man XmText) show what resources can
generally be set for this class. You can find some more examples
for setting resources in files in the
finesse/examples/app-defaults directory. A comfortable

User guide 75

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

way of setting resources for an application is the editres
program that is part of the X distribution on some computers. It
would lead too far to discuss further details of setting resources,
such as tight and loose bindings. You can look up these details in
the books mentioned above, X Window System User’s Guide and
OSF/Motif User’s Guide.

Standard resource files

Every X application - and every Finesse application as well -
should have its own resource file where the developer defines
default values for the application. This file usually is located in the
/usr/lib/X11/app-defaults directory and is called the
app-defaults file. When an application is started, the app-defaults
directory is searched for a corresponding resource file, and if it is
found, this file is read in. The resource file name typically is the
class name of the application. Finesse applications follow the X
convention to form the class name by capitalizing the first letter of
the name of an application or, the first one being an x, the first two
letters, respectively. For example, if any user writes a Finesse
script named nastran the corresponding resources should be
stored in a file called Nastran, and this file should be moved to
the directory /usr/lib/X11/app-defaults when installing
the application. On starting the application this file will be read
automatically.

While developing a script, you can easily test X resource settings
by means of the environment variable XENVIRONMENT .

setenv XENVIRONMENT tmpres

sets as a X resource file the file called tmpres in the current
working directory, i.e. every X application started later on - with
any name - will read this file at the beginning. When the settings
in this file have been adapted to the script being developed the file
can be copied with its correct name to the directory
/usr/lib/X11/app-defaults and variable XENVIRONMENT
can be deleted from the environment.

The Finesse resource file

The file Finesse is part of the distribution. It contains a few
resource settings that give the default values for any Finesse
application, but can be changed if necessary. This is why these
resources have not been integrated into the Finesse code. One of
these resources is the editing functions for text widgets, which are
similar to the Gnu-Emacs editor. Users preferring other editors

76 Finesse User’s Guide

will thus be able to change these editing functions. Here a minor
bootstrap is that the resources from the file Finesse are set only
if in the app-defaults directory no file specific for this
application is found. On the other hand, this contradicts the
suggestion to offer one such file for every application. To solve this
dilemma and keep the Finesse resources either you can copy the
contents of Finesse into the app-defaults file, or you include them
starting from X11R5 with

#include “/usr/local/finesse/Finesse”

for example.

Changing resources within the script

Figure 30 display from example csh/display_primes

The Finesse developer has the opportunity to convert X resources
in Finesse elements during runtime by using the -r Fsdisplay
option. Thus it is possible, e.g., to change the background color
for text fields with wrong input in order to give users an optical
help for correcting their input on recalling the window. Calling

Fsdisplay -r name:resource:value

converts the X resource resource in widget name to the value value.

The following example re-implements the display_primes
example in a simpler way, using the -r option. For a change this
example is written as a csh script:

#! /bin/csh
#
#
if (! $?FINESSEPATH) set FINESSEPATH =
/usr/local/finesse
source $FINESSEPATH/fscshinit

User guide 77

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

set path = ($path /usr/games)

Definition

set i = 1
set prf = "tf:background:black"
set prf4 = "tf:foreground:red"
set prf2 = "tf:labelString:Starting..."

set windef = \
"FsWindow -name pw;FsSeparator;FsLabel -label $i
-name tf;"

Fsopen
while (1)
 Fsdisplay -w $windef:q -n pw -s touch \
 -r $prf -r $prf2 -r $prf4
 if ("$fsbutton" == "a") then
 break
 endif

 sleep 1
 set i = `expr $i + 1`
 set wl = (`factor $i`)
 shift wl
 if ("$wl[1]" == "$i") then
 set prf = "tf:background:black"
 set prf4 = "tf:foreground:red"
 else
 set prf = "tf:background:blue"
 set prf4 = "tf:foreground:yellow"
 endif
 set prf2 = "tf:labelString:$i"
end
Fsclose

Figure 31 csh/display_primes script

For simple Finesse elements such as FsLabel name defines the
name given in the window declaration by the -name option. For
compound elements such as FsText, consisting of label field and
text field, a number enclosed in square brackets can be added if
the desired X resource is not to be set for the main element. The
FsText main element is the text field, the label field has number
2. Calling

Fsdisplay -r mytext:background:red \

 -r mytext[2]:background:blue

78 Finesse User’s Guide

will set the background colors for text element mytext to
different values for label field and text field. Earlier in this chapter
you will find a table where column 1 tells you which element is the
main element ([0]) and what are the numbers (in square brackets)
of other elements. Fields in menus (FsRadio, FsCheck, and
FsOptionMenu) are also referenced by the name of their Finesse
element and receive successive numbers. An element with no
name set in the window declaration cannot convert settings of X
resources. Elements designed to convert resource settings must
not contain colons in their names.

Setting X resources using the command line

X applications should allow the user to set resources when
invoking the application, too. Primarily, this method serves for
specifying standard application resources. One of these is the X
server used. For example, with the command

aba -display orion:0

the orion workstation X server can be used to display the shell
script aba. Correspondingly, the call

aba -fg red -bg yellow

sets the foreground color of application aba to red and the
background color to yellow.

With the help of the -xrm command option any X resource can be
specified if the application allows this. The -xrm option argument
is a resource setting in the usual variable/value syntax. For
example, the command

aba -xrm ’*background: yellow’

 sets the window background to yellow. The resource statement is
surrounded by single quotes ’ (acute) so that it will be passed as
one argument and the * sign in a csh environment is not
interpreted prematurely by the calling shell. By repeating the
-xrm option, several resources may be set when invoking an
application.

Finesse supports both of the possibilities to set X resources when
calling a script. The shell script arguments only have to be passed
to the Finesse server to be taken into account when windows are
created. In csh scripts this is done automatically in the
initialization files, whereas in sh scripts the server must be called
with the argument “$@”:

Fsopen “$@”

User guide 79

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

Here it is important not to forget the double quotes. They cause
every shell script argument to be preserved and passed to the
server without any alteration. Without the double quotes the
second argument ’*background: yellow’ would be passed
as two separate arguments *background: and yellow, which
would make the -xrm resource argument incomplete. This
demonstrates that the argument “$@” should not be left out from
any Finesse server call in an sh script.

The previous explanations show that with the help of the -xrm
option, X resources can be set inside a Finesse script as well. They
only have to be set as additional arguments when the Finesse
server is invoked. You could as well set the background color to
yellow for an application by calling

Fsopen -xrm ’*background: yellow’

As resource settings by the -xrm option have higher priority
compared to equivalent specifications in a resource file, you
should try to avoid setting resources inside the shell script. In this
case the user has no opportunity to choose his or her own global
background color. This kind of resource setting is useful only if the
aim definitely is to prohibit any change in the resource value. It is
assumed to be good style to allow resource settings by the user as
often as possible.

Resource settings by users

Users, too, have several different possibilities to set resources for
their applications. This can be done with the help of the
environment variables XUSERFILESEARCHPATH or
XAPPLRESDIR or in files specific for the application with the
application class name. Often users specify all their resource
parameters in the .Xdefaults file in the home directory. As
entries for all applications of a user are located there, resource
entries restricted to a certain application have to start with the
instance or class name of this application. By default the instance
name is identical to the application name, but can be changed to
any other value with the command option -name. After the
instance or class name, the widget hierarchy, the resource name,
and its value are given in the usual way. For example, the
.Xdefaults entries

*background: SlateGray
nastran*background: RoyalBlue
abaqus*background: RosyBrown

80 Finesse User’s Guide

specify SlateGray as the standard background color for all
applications, but RoyalBlue and RosyBrown for the
applications nastran and abaqus, respectively.

Actually, the resources specified in.Xdefaults are not generally
read when an X program is called. Many X configurations
automatically set the RESOURCE_MANAGER property of the root
window of the server used by calling the xrdb program from a
startup script when logging in. Xrdb loads resources from files
specified as arguments (for example, .Xdefaults or
.Xresources) to the X server. When an X application is called,
only the list of resources loaded to the server is searched but not
any more the .Xdefaults file. In those cases where the
RESOURCE_MANAGER property is set when logging in the user
best will save his or her resource entries to one of the files loaded
by xrdb.

Only if the RESOURCE_MANAGER property has not been set
.Xdefaults will be read, searched for entries concerning the
current application, and the appropriate values will be set. By
means of the command

xrdb -merge .Xdefaults

new resources added to .Xdefaults can be loaded to those
present in the server and are then instantaneously available for
subsequent X program calls.

User guide 81

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

Initialization files At the beginning of a Finesse shell script, a short initialization
script is called which is named fsshinit (sh) or fscshinit
(csh) depending on the shell type. Using the initialization script
allows writing Finesse scripts as described in the preceding
sections. On the other hand using the initialization scripts in their
existing form is not at all mandatory. For partial modification— if
desired—some deeper insight into your initialization scripts is
necessary. Therefore the sections that follow will deal with these
scripts in more detail. If you are interested in programming
Finesse applications only in the form shown in our examples, then
skip the remainder of this section.

The fsshinit initialization script

The initialization script fsshinit for sh scripts has the form

Finesse definitions for sh-type scripts

SHELLTYPE=sh export SHELLTYPE
PATH=${FINESSEPATH-/usr/local/finesse}/bin:$PATH
export PATH
null=$0

Fsclose() { eval "`fsclose "$@"`" ; return $? ; }
Fsdisplay() { eval "`fsdisplay "$@"`" ||
 { Fsclose; exit 1 ; } }
Fsecho() { eval "`fsecho "$@"`" ; return $? ; }
Fsopen() { eval "`fsopen -n "$null" -p $$ \
 ${1+"$@"}`"|| exit 1 ; }
Fssave() { eval "`fssave "$@"`" ; return $? ; }

The first line sets the shell variable SHELLTYPE to sh. As the shell
variable SHELLTYPE will be read by every subsequent Finesse
command, it has to be set first.

Finesse function definitions

After the shell type is set, the definition of the shell functions
Fsopen, Fsclose, Fsdisplay, Fsecho, and Fssave are given.
As a shell function in the shell script is called without the
parenthesis of its definition, this means that the Finesse
“commands” Fsopen, Fsdisplay, etc. actually are function calls
in the shell script. Calling a function will execute the list of
commands defined by the function.

The command list structure looks similar for all functions. First,
eval is executed, which has a command substitution as an
argument. Finally, either return $? returns the exit status of the

82 Finesse User’s Guide

eval command to the calling shell script as the exit status of the
function, or, in case of errors within Fsdisplay and Fsopen the
script is terminated by the exit command.

Basic Finesse commands

In order to understand the meaning of the function definitions
let's have a look at the eval command. First the eval command
reads its arguments and combines them with a command. Among
others, command substitutions are executed on reading.
Command substitution means that a command enclosed in single
back quotes will be executed and substituted by its standard
output. The generated command will be read and executed
subsequently if it is non vanishing. So taken all together the eval
command arguments will be read twice.

The fsdisplay function

When working with Finesse commands you will notice
corresponding Finesse functions. These functions are called by the
Finesse command of the same name, but with an initial capital
letter. For example, the eval command of Fsdisplay calls
fsdisplay to do the actual work.

So fsdisplay is the actual command that opens a window when
Fsdisplay is called. The Fsdisplay arguments, for example,
the window description, are passed to fsdisplay by means of
the "$@" option. The fsdisplay command therefore has the
same argument options as Fsdisplay.

On successful completion fsdisplay writes a line to the
standard output which in the case of the text input example of
Figure 8 could look like this:

fsbutton='o' && name='Herbie'

After that the above line will be read by eval and executed as a
list of commands, a method by which the shell variable
fsbutton gets the value o and the variable name gets the value
Herbie in our example. By this mechanism Fsdisplay sets the
variables defined by the window declaration to the values
specified in the window. The variable values are returned
enclosed in single quotes ` ` which simplifies returning special
characters, among others. Even with no variable specified in the
window declaration, at least the fsbutton variable will be set
when fsdisplay terminates correctly.

User guide 83

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

The outer double quotes of the eval command finally prohibit
that declaration carriage returns, if existent, are lost during the
first eval phase, which is important with complex list output. As
other Finesse commands do not return any variables, they would
not need these additional quotes.

The fsopen command

In a way similar to fsdisplay the basic commands fsopen,
fsclose, fsecho, and fssave of the remaining function
definitions are evaluated. The fsopen command deserves a
special comment as it can be called with various command
options. Like the fsdisplay command it possesses the "$@"
argument option. So Fsopen and fsopen understand the same
arguments.

The command fsopen contains two options that have not yet
been mentioned in the Fsopen description in previous sections.

-n name

Passes the Finesse shell script name as its value. This name is
necessary to identify the Finesse and X resources assigned to
this particular application.

-p PID

specifies id of the exit process to the application server.

Termination of this process will automatically cause the
termination of the application server as well. The initialization file
by $$ sets the current shell script process as the exit process. In
this way any unexpected shell script interrupt, for example,
following a script syntax error, leads to automatic termination of
the application server, even if an Fsclose command has not been
executed explicitly. See the “fsopen” section on page 91 for a
complete list of possible fsopen options.

Exit status of Finesse function definitions

As mentioned above, the exit status of the eval command is
returned as the exit status of Finesse functions such as
Fsdisplay. Usually the eval command exit status is the exit
status of the command executed after reading the arguments. If
the result after reading the arguments is zero, i.e., there is no
command to execute, the eval exit status is the exit status of the
command executed last when reading. Typically in these cases
this is a command substitution command. If inside of the eval
command no command has been executed, given a command

84 Finesse User’s Guide

without any arguments, for example, the eval command exit
status is True, that is 0.

Basic Finesse commands do not write to standard output if they
are exited incorrectly, i.e., with an exit status other than 0. In this
case the eval command returns the incorrect error state that will
be passed back by the subsequent return $? as the function
definition exit status. Therefore a status check of the Finesse
function definition can test whether the underlying basic call is
correct.

In the case of Fsopen and Fsdisplay, status checks are even
more rigid. If the fsopen command is not terminated
successfully, the script is terminated immediately. Continuing
with the script would make no sense because additional errors of
subsequent commands would follow. Termination also occurs for
errors within the Fsdisplay command. The main reason for this
is to avoid endless loops in cases where Fsdisplay is called
within a loop while Fsopen is terminated. This situation occurs,
for example, if someone logsout, while a Finesse application is
running. ThenFsopen as an ordinary X application is terminated,
too, and as a result Fsdisplay looses its connection and
terminates also. To avoid repeated calls of Fsdisplay, e.g. in a
while loop, the script must be terminated, too, in such a situation.

The fscshinit initialization script

csh shells do not have function definitions like Bourne shells.
They do have the alias command in which you can map the
Finesse commands. This alias definition takes the place of the
function definition shown in the fsshinit script.

Finesse definitions for csh-type scripts

setenv SHELLTYPE csh
if (! $?FINESSEPATH) \
 set FINESSEPATH = /usr/local/finesse
set path = ($FINESSEPATH/bin $path)

alias Fsclose 'eval `fsclose \!*`'
alias Fsdisplay 'eval `fsdisplay \!*` || (Fsclose;\
exit 1;)'
alias Fsecho 'eval `fsecho \!*`'
alias Fsopen 'eval `fsopen -n "$0" -p $$ \!* \
$argv:q` || exit 1'
alias Fssave 'eval `fssave \!*`'

User guide 85

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

U
se

r g
u

id
e

An additional status return as a second command is not necessary
here, because when an alias definition is called, the command
written behind it is executed immediately. Except for a
moderately different shell syntax, the eval commands mostly
correspond to those used in the fsshinit file. New-line
characters cannot be returned by the above syntax because of the
unsatisfactory dealing with line feed in csh shells, which implies
that in cases where these characters are important, you shouldn't
use a csh shell. Another qualitative difference to the sh definitions
is that fsopen contains an additional argument argv:q which
disposes of passing on the shell script arguments to fsopen.

The fsperlinit initialization script

Finesse definitions for perl scripts

$ENV{'SHELLTYPE'}='perl';
$ENV{'PATH'} =
"$ENV{'FINESSEPATH'}/bin:$ENV{'PATH'}";

sub Fsclose { local($a)=join("\" \"",@_) ;
 eval `fsclose "$a"`; !$@ && !$? ; }
sub Fsdisplay { local($a)=join("\" \"",@_) ;
 eval `fsdisplay "$a"` ;
 !$@ && !$? || die "$@Error in
Fsdisplay"; }
sub Fsecho { local($a)=join("\" \"",@_) ;
 eval `fsecho "$a"`; !$@ && !$? ; }
sub Fsopen { local($a)=join("\" \"",@_) ;
 eval `fsopen -n $0 -p $$ "$a"` ;
 !$@ && !$? || die "$@Error in
Fsopen"; }
sub Fssave { local($a)=join("\" \"",@_) ;
 eval `fssave "$a"`; !$@ && !$? ; }

The perl initialization script resembles the sh script interface.
Here, too, the (perl) eval command serves for returning
window values to the script. As perl function calls have lists as
arguments, those lists by means of the join function first have
to be translated into command arguments separated by blanks.
As with the other initialization scripts you have to take care that
arguments are quoted correctly. Perl returns the last system
command status in the $? variable, the last eval command
status in the $@ variable. Each one of these can be true or
false independent from the other one, therefore both are

86 Finesse User’s Guide

checked. If Fsdisplay or Fsopen contains an error the die
command terminates the script with an error message.

87

Error messages

Finesse tries to anticipate erroneous input and to correct
forthcoming problems on its own. When this is not possible or not
useful Finesse tries to indicate possible reasons by means of
messages to the user to facilitate correcting the error.

Warnings and fatal errors are written to standard error and
appear in the terminal window. The following list contains the
most important error messages:

• progname: Version mismatch. Exiting.

Application server and client program are of a different
release. Release numbers can be checked by

progname -x

• fsopen: Bad licence. Exiting.

Finesse licensing is incorrect.

• fsopen: Connection already open. Exiting.

A second application server has been started without
terminating the first one.

• progname: No connection setup. Exiting.

No connection could be established to the application server,
usually because the application server was not running.

• progname: No data. Exiting.

No data connection between progname and the application
server exists, for example, because the application server was

killed.

• progname: Bad or missing shell type. Exiting.

The environment variable SHELLTYPE has been set
incorrectly or not at all.

• progname: Syntax error. Exiting.

Error on calling the program. When progname is fsdisplay,
syntax error may refer also to an error in the window
declaration.

5

88 Finesse User’s Guide

• fsdisplay: Bad or missing variable name.
Exiting.

A widget declaration in the window definition is lacking a
required variable option.

• fsdisplay: Bad window name. Exiting.

The window name corresponding to the -n option has not
been found when calling the program.

• fsdisplay: Unexpected end of window
declaration. Exiting.

Error in window declaration. Typically a semicolon is missing
at the end of the window declaration.

• fsdisplay: Window declaration syntax
error:text.

Error while scanning window declaration. The string text was
not expected at this point.

• fsopen: No exit process registered.

fsopen has not registered an exit process whose termination
would indicate for the application server to terminate as well.
Under certain circumstances this may result in a left over
application server. An exit process is registered automatically
by the initialization script fsshinit or fscshinit.

User commands 89

U
se

r c
o

m
m

a
n

d
s

U
se

r c
o

m
m

a
n

d
s

U
se

r c
o

m
m

a
n

d
s

U
se

r c
o

m
m

a
n

d
s

U
se

r c
o

m
m

a
n

d
s

User commands

This chapter describes the Finesse commands and their syntax.

Within choices, argument values given in boldface indicate
default values.

6

90 Finesse User’s Guide

fsclose

Description The last command of every Finesse shell script dialog.

fsclose closes the application server previously opened by
fsopen.

Syntax fsclose [-x]

The -x option returns the release number.

User commands 91

U
se

r c
o

m
m

a
n

d
s

U
se

r c
o

m
m

a
n

d
s

U
se

r c
o

m
m

a
n

d
s

U
se

r c
o

m
m

a
n

d
s

U
se

r c
o

m
m

a
n

d
s

fsdisplay

Description Finesse command to display a window. To call a window the first
time Fsdisplay needs the window description that contains the
complete information on window layout, widgets, default
settings, and variable names.

Syntax fsdisplay [arg ...]

-f file

Window declaration from out of a file.

-m text

Text of the info label.

-n window

Referencing an existing window.

-r name:resource:value

Referencing an existing window.

-s { input | close | touch }

Window status.

-v name=value

Variable with new value.

-w window_definition

Window declaration.

-x

Obtain release number.

The default window status is input, i.e., the window is waiting
for input and confirmation after display. The close option is
possible only in combination with the -n option and closes the
window referenced by -n. The touch option opens the desired
window but does not admit any input.

Given no arguments fsdisplay assumes a window description
from standard input.

92 Finesse User’s Guide

fsecho

Description Command writing its arguments as messages to the Finesse echo
window, similar to the echo command.

Syntax fsecho [{ -x | text | \
{ -t text |-f file | -e | -i } \
[-r number] [-c number] \
[-p { end | beginning }] }]

text

 Text in the echo window.

-c number

Number of columns displayed in the window.

-e

Clear window.

-f filename

File in the echo window.

-i

Read from standard input.

-p { end | beginning }

Position at the beginning or at the end of the text.

-r number

Number of rows displayed in the window.

-t text

Text in the echo window.

-x

Obtain release number.

User commands 93

U
se

r c
o

m
m

a
n

d
s

U
se

r c
o

m
m

a
n

d
s

U
se

r c
o

m
m

a
n

d
s

U
se

r c
o

m
m

a
n

d
s

U
se

r c
o

m
m

a
n

d
s

fsopen

Description The first command of a Finesse shell script dialog starting the
Finesse application server.

Syntax fsopen [arg ...]

Arguments:

-n name

Name of calling shell script, set the class name as well as the
resource name.

-o { 1 | 2 | 3 }

Redirect standard output within script.

-p PID

Process ID of exit process.

-r file

Reading resources out of file.

-x

Obtain release number.

The initialization scripts automatically set the three arguments-r,
-n, and -p. At least one of the possible options is necessary.
Therefore, when calling Fsopen, usually only the -o option is of
interest . Additionally, resource specifications may be given as
arguments to Fsopen, although this is not recommended.
Furthermore, in Bourne shells it is generally useful to set "$@" as
an argument in order to pass resource specifications from the shell
script command line, if existent, to the Finesse server. In an csh
script this is done automatically. So Fsopen calls typically look
like this:

Fsopen (csh shells)

&Fsopen(@ARGV) (perl scripts)

Fsopen "$@" (sh shells)

94 Finesse User’s Guide

fssave

Description Command to save all variables and corresponding values that are
registered in the server up to that moment.

Syntax fssave [-x]

The variable/value pairs are saved in a file stored in the
$HOME/.finesse directory and called scriptname.rsc. In a
similar way, when calling a shell script without explicitly giving a
resource file, a file with a corresponding name is looked up and
read, if existent, in the .finesse subdirectory of the home
directory.

-x

Returns the Fssave release number.

U
se

r
co

m
m

an
ds

95

User commands User commands User commands User commands User commands

96 Finesse User’s Guide

Widget reference 97

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

Widget reference

This chapter describes the Finesse widget elements and their
syntax.

7

98 Finesse User’s Guide

FsCheck

Description This menu allows selecting several items by switching on the
corresponding indicators.

Syntax FsCheck -var name [arg ...]

-data { yes | no }

Variable and value return, if -winstat touch is set.

-fsbutton value

Return value of fsbutton variable.

-inputsep { char }+

Separating characters for -items input.

-items item1 item2 ...

Item names.

-label name

Title of check menu.

-name name

Instance name for specifying X resources for the widget.

-nrows number

Number of rows for alignment.

-outputsep string

Separating string for -items output.

-parent name

Name of parent window. name could be the corresponding
FsWindow window name or the name of any existingFsForm
container element. By this method the widget can be assigned
to the container element given. Lacking the option or any
valid name, the widget is assigned to the FsWindow element
by default.

-var name[=[=]value]

Variable name with optional default value.

-winstat { input | touch }

Window status after clicking.

Widget reference 99

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

FsForm

Description FsForm is a container element where other widgets can be
arranged horizontally, vertically, in rows, or in columns. FsForm
helps you designing your windows as you like.

Syntax FsForm -name name [arg ...]

-name name

Instance name of the widget FsForm. With this option
FsForm is made available for referencing as parent of other
widgets.

-nrows number

If -orientation horizontal, number of rows.

If -orientation vertical, number of columns.

-orientation { horizontal | vertical }

Orientation of widgets within FsForm.

-packing { equal | tight }

Sizing of child widgets.

-parent name

Name of parent window.

-spacing number

Distance between widgets in FsForm. The -spacing option
defines the horizontal and vertical distance between widgets.

100 Finesse User’s Guide

FsLabel

Description Widget without interaction. Typically FsLabel is used to display
user information. The label text is specified by giving a -label
argument:

Syntax FsLabel [arg ...]

-alignment { beginning | center | end }

Position of text, default is center.

-label [varname=]text

Text to be placed in label. Quotes around text are needed only
when special characters are used. varname= is used to assign
the label text to a variable that can be changed by subsequent
window calls.

-name name

Instance name for specifying X resources for the widget.

-parent name

Name of parent window.

Widget reference 101

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

FsList

Description FsList generates a list widget that allows choosing entries from
the list. The -include parameter determines whether the list
will appear in the main window (default) or in a separate window.
In the latter case, the main window will show a push button and
a text widget. Pressing the push button will open a separate
window containing the list widget.

Syntax FsList -var name [arg ...]

-alignment { beginning | center | end }

Position of label text, default is center.

-expert name_of_pushbutton

Default action for double click on list item.

-include { yes | no }

List display in main window or in separate window.

-inputsep { char }+

Separating characters for list items.

-items item1 item2 ...

List entries.

-label name

List title.

-mode { single | multiple }

Select one or several list items.

-name name

Instance name for specifying X resources for the widget.

-nvisible number

Number of visible list items.

-outputsep string

Separating string for -items output.

-packing { equal | tight }

Spacing between push button and text widget. Default value
is equal, which means both are equally sized.

-parent name

Name of parent window.

102 Finesse User’s Guide

-sensitive { yes | no }

Items selectable or not.

-spacing number

Defines the horizontal and vertical distance between widgets.

-title name

Window heading if displayed separately.

-var name[=[=]value]

Variable name with optional default value.

When updating list items, the corresponding action is specified
for each list entry by appending one of the following keywords:

The keywords select, unselect and delete may be used
with a wildcard character “*” to specify all the list items.

Example Fsdisplay -n name -v 'list=a[delete] b[add]'

deletes the list entry a and adds the new list entry b in the window
called name.

Fsdisplay -n name -v ’list=tick[replace]tack’

the item tack is replaced by the item tick in the window name.
Fsdisplay -n name -v ’list=*[unselect] new[topinsert]’

unselects all existing items in the window name and adds the item
new at the beginning of the list.

Table 5 Fslist keywords

Command Action

a[add] Add item a

a[addselect] Add and select item a

a[after]b Insert item a after item b

a[before]b Insert item a before item b

a[delete] Delete item a

a[replace]b Replace item b with item a

a[select] Select item a

a[topinsert] Add item a at beginning of list

a[unselect] Unselect item a

Widget reference 103

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

FsOptionMenu

Description Widget with menu items to choose “one out of many”.

Syntax FsOptionMenu -var name -items item1 [item2 ...] [arg ...]

-data { yes | no }

Variable and value return, if -winstat touch is set.

-fsbutton value

Return value of fsbutton variable.

-inputsep { char }+

Separating characters for -items input.

-items item1 item2 ...

Possible options.

-label name

Option menu label.

-name name

Instance name for specifying X resources for the widget.

-parent name

Name of parent window.

-var name [=[=]value]

Variable name with optional default value.

-winstat { input | touch }

Window status after clicking.

104 Finesse User’s Guide

FsPushButton

Description FsPushButton allows you to create your own push buttons that
can be equipped with certain properties.

Syntax FsPushButton [arg ...]

-data { yes | no }

Variable/value return.

-fsbutton value

Value returned in variable fsbutton.

-label name

Push button label.

-name name

Instance name for specifying X resources for the widget.

-nrows number

Number of rows if several push buttons are specified
consecutively.

-packing { equal | tight }

Width of consecutive push buttons. Eighter same width or
width according to button label.

-parent name

Name of parent window.

-type { o|a|s|x }+

Predefined push buttons. After the keyword -type any
sequence of the above letters is possible. Table 7 shows a list
of the letters and their actions.

-winstat { touch | close }

Window status after clicking.

Widget reference 105

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

Table 6 FsPushButton
-type keywords

Value Action

o OK button

a Abort button

s Save as ... button

x empty space

106 Finesse User’s Guide

FsRadio

Description This menu allows choosing one item out of many by setting the
associated indicator.

Syntax FsRadio -var name [arg ...]

-data { yes | no }

Variable/value return.

-fsbutton value

Value returned in variable fsbutton.

-inputsep { char }+

Separating characters for -items input.

-items item1 item2 ...

Radio items.

-label name

Title.

-name name

Instance name for specifying X resources for the widget.

-nrows number

Number of rows.

-parent name

Name of parent window.

-var name [=[=]value]

Variable name with optional default value.

-winstat { input | touch }

Window status after clicking.

Widget reference 107

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

FsSelectionText

Description Widget for selecting files.

This widget combines two widgets: on the left side a push button
to select the files, on the right side a text widget to enter file names.
Pressing the push button opens a file selection box. On
confirmation the desired file is transferred to the text widget
automatically.

Syntax FsSelectionText -var name [arg ...]

-alignment { beginning | center | end }

Position for label text, default is center.

-bdefault push_button_name

Default action for Return in text field.

-dirmask [varname=]value

Specifies the directory mask for the file selection box.
dirmask may be specified as a variable by using the
varname= option.

-label text

Label of push button.

-name name

Instance name for specifying X resources for the widget.

-packing { equal | tight }

Spacing of the text widgets. Default value is equal, which
means both text lists are equally sized.

-parent name

Name of parent window.

-spacing number

 Defines the horizontal and vertical distance between widgets.

-title name

Heading of file selection window.

-var name[=[=]value]

Variable name with optional default value.

108 Finesse User’s Guide

FsSeparator

Description Widget creating a horizontal line in the window. This is useful for
graphically separating widgets that are different in their type.

Syntax FsSeparator [arg ...]

-line {no|solid|soliddouble|dashed|dasheddouble}

Line style of separator. The default is solid.

-name name

Instance name for specifying X resources for the widget.

-parent name

Name of parent window.

Widget reference 109

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

FsText

Description Widget to enter text.

The name variable receives the input text that will be passed back
to the shell script. If no label is given, the variable name will be set
as a label.

Syntax FsText -var name [arg ...]

-alignment { beginning | center | end }

Position for label text, default is center.

-bdefault push_button_name

Default action for Return in text field.

-label text

Label of text widget. If an empty string is used (’’), no space is
reserved for the label text, moving the input field to the left
edge of the window.

-name name

Instance name for specifying X resources for the widget.

-packing { equal | tight }

Spacing of the text widgets. Default value is equal, which
means both text lists are equally sized.

-parent name

Name of parent window.

-sensitive { yes | no }

Widget may be edited or not.

-spacing number

 Defines the horizontal and vertical distance between widgets.

-texttype type[[[a],[b]]]

Type in the -texttype option can take the values int, num,
digit, alpha, or alnum; the bracketed term following it is
optional. If the bracketed term is given each one of the values
a or b is optional. The values a and b restrict the region of valid
input in the text widget. They denote lower and upper limit
for input values or the minimum and maximum length of the
input string, respectively. If one of the limits is missing input
is not restricted as far as this limit is concerned.

110 Finesse User’s Guide

-var name[=[=]value]

Variable name with optional default value.

Widget reference 111

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

W
id

g
e

t re
fe

re
n

c
e

FsWindow

Description Keyword at the beginning of a window declaration.

Syntax FsWindow [arg ...]

-bdefault push_button_name

Default action for Return in window.

-btype { o|a|s|x }+

Push buttons in the lower bottom of the window. After the
keyword -btype any sequence of the above letters is
possible. Table 7 describes the letters and their actions.

-name name

Instance name for specifying X resources for the widget.

-nrows number

Number of rows or columns, respectively. This option defines
the number of rows or columns in the window, depending on
the -orientation value. This option only takes effect if the
-packing option has a value of equal.

-orientation { horizontal | vertical }

Widget orientation. This option allows you to define how
widgets should be arranged inside the window. Default is one
widget below the other (vertical).

-packing { tight | equal }

Widget size. This option controls the widget size inside the
window. Default is tight, which shrinks each widget to its
minimal size. The equal argument results in equal sizes of
the widgets.

-spacing number

Distance between widgets. The -spacing option determines
the distance between widgets in the window, with composite
widgets the distance between the two widgets.

-title name

Window title.

112 Finesse User’s Guide

Table 7 Fswindow -btype
keywords

Value Action

o OK button

a Abort button

s Save as ... button

x empty space

Example programs 113

E
x
a

m
p

le
 p

ro
g

ra
m

s
E
x
a

m
p

le
 p

ro
g

ra
m

s
E
x

a
m

p
le

 p
ro

g
ra

m
s

E
x

a
m

p
le

 p
ro

g
ra

m
s

E
x

a
m

p
le

 p
ro

g
ra

m
s

Example programs

This chapter contains additional example programs that use
various Finesse features.

8

114 Finesse User’s Guide

The master demo
examples_sh

The master demo examples_sh can be called immediately after
Finesse has been installed. It allows comfortably starting of all
examples located in subdirectory sh, i.e., all Bourne shell
examples. This demo itself has some interesting features that
justify looking more closely:

Figure 32 examples_sh

 sh script initialization
. ${FINESSEPATH-/usr/local/finesse}/fsshinit

examplespath=${FINESSEPATH-/usr/local/finesse}/exampl
es

shdir=$examplespath/sh
XUSERFILESEARCHPATH=\
$examplespath/app-defaults/%N:$XUSERFILESEARCHPATH
export XUSERFILESEARCHPATH

define examples and main window

nrows=4; ftag=f; ctag=ck

Example programs 115

E
x
a

m
p

le
 p

ro
g

ra
m

s
E
x
a

m
p

le
 p

ro
g

ra
m

s
E
x

a
m

p
le

 p
ro

g
ra

m
s

E
x

a
m

p
le

 p
ro

g
ra

m
s

E
x

a
m

p
le

 p
ro

g
ra

m
s

j=0; k=0
examples="FsForm -name mainform;"

for i in `ls $shdir`
do
 k=`expr $j / $nrows`
 if expr $j % $nrows > /dev/null
 then
 formvar=
 else
 formvar="FsForm -name $ftag$k
 -orientation horizontal
 -parent mainform;"
 fi
 examples="$examples $formvar
 FsForm -name $ftag$i -parent $ftag$k;
 FsPushButton -label $i -parent $ftag$i
 -name $i -winstat touch;
 FsCheck -var $ctag$i -items 'x'
 -name $ctag$i -parent $ftag$i
 -fsbutton $ctag$i -winstat touch;"
 rmcklabel="$rmcklabel -r $ctag$i[3]:labelString:"
 j=`expr $j + 1`
done

mainwin="
 FsWindow -name main;
 $examples
 FsSeparator;
 FsPushButton -label OK;"

Finesse dialog

Fsopen
Fsdisplay -w "$mainwin" $rmcklabel
while :
do
 case $fsbutton in
 OK|a) break;;
 $ctag*) updtck= ;;
 *) updtck="-r $ctag$fsbutton[3]:set:True"
 (unset FSREADFILE FSWRITEFILE;
 $shdir/$fsbutton);;
 esac
 Fsdisplay -n main $updtck
done
Fssave
Fsclose

Figure 33 Master demo examples_sh

116 Finesse User’s Guide

The script essentially consists of three parts: short initialization,
window declaration, and window dialog. Apart from the usualsh
initialization, the first part contains the definition of the
environment variableXUSERFILESEARCHPATH to make sure that
examples called from the window can find the X resource files
without any user interaction. As mentioned before, this should
not be understood as global tactics for setting resources but only
as a means justified to facilitate the first Finesse window call for
demonstration only.

The second part contains the window declaration. This is done
mainly automatically. Window elements are generated using the
information of the ls $shdir command, i.e. without explicitly
naming the examples. For parameterization the name $i of the
example concerned is used. Each of the examples consists of a
FsPushButton located above a check menu with selection field.
Both are held together in a FsForm container element. $nrows
examples are collected in horizontal containers defined by the
$formvar shell variable. Those containers are positioned one
below the other in the main container mainform. The collection
of all examples got recursively from the for loop is stored in the
$examples variable and inserted below in the definition of the
main window mainwin.

After this, the Finesse dialog follow. The main window first is
called once with the window definition, afterwards several times
corresponding to the $fsbutton variable in a while loop. At the
first call the selection field labels are erased by the shell variable
$rmcklabel. This has been prepared in the for loop for
constructing window elements. When updating resources with
-r $ctag$fsbutton[3]:set:true the menu field
corresponding to an example button that has been pushed can be
identified and marked without a label.

The Fssave command at the end of the dialog saves the
markings. On recalling the window, the examples called earlier
are marked. Clicking at the check menu field unmarks a marked
example.

Finally, the calling of examples should be explained: This is done
in its own subshell after the Finesse intern environment variables
FSREADPIPE and FSWRITEPIPE have been deleted. Those are
necessary for internal communication between Finesse server and
Finesse clients. As soon as in a shell script several independent
Finesse servers shall be started these have to be enabled to
communicate with their respective clients using separate Finesse
variables. One Finesse server, however, will be sufficient for most
of the Finesse dialogs.

Example programs 117

E
x
a

m
p

le
 p

ro
g

ra
m

s
E
x
a

m
p

le
 p

ro
g

ra
m

s
E
x

a
m

p
le

 p
ro

g
ra

m
s

E
x

a
m

p
le

 p
ro

g
ra

m
s

E
x

a
m

p
le

 p
ro

g
ra

m
s

The master demo
examples_csh

Figure 34 examples_csh

#! /bin/csh

csh script initialization
if (! $?FINESSEPATH) \
 set FINESSEPATH = /usr/local/finesse
source $FINESSEPATH/fscshinit

set examplespath = $FINESSEPATH/examples

118 Finesse User’s Guide

set examplespath = /proj/finesse/examples
set appdefpath = $examplespath/app-defaults
set bitmapspath = $appdefpath/bitmaps
set cshdir = $examplespath/csh

define bitmap/pixmap files

set logo = $bitmapspath/logo
set logoxbm = $bitmapspath/logo.xbm
set logoxpm = $bitmapspath/logo.xpm
set hw = $bitmapspath/hello_world
set hwxbm = $bitmapspath/hello_world.xbm
set hwxpm = $bitmapspath/hello_world.xpm

make sure XAPPLRESDIR is used to get bitmaps

unsetenv XUSERFILESEARCHPATH
setenv XAPPLRESDIR $appdefpath

define examples and main window

set nrows = 2; set ftag = f

set j = 0; set k = 0
set examples = "FsForm -name mf;"

foreach i (`(cd $cshdir; ls)`)
 set k = `expr $j / $nrows`
 expr $j % $nrows > /dev/null
 if ($status == 0) then
 set form1 =
 set form2 =
 else
 set form1 = "FsForm -name $ftag$k"
 set form2 = "-orientation horizontal -parent
mf;"
 endif
 set form = "$form1 $form2"
 set push1 = "FsPushButton -label $i -parent
$ftag$k"
 set push2 = "-name $i -winstat touch;"
 set push = "$push1 $push2"
 set examples = "$examples $form $push"
 set j = `expr $j + 1`
end

set lb = "FsPushButton -name s+c -winstat touch"
set lbargs = "-fsbutton s+c -parent $ftag$k;"
set okb = "FsPushButton -label OK;"
set mainwin = \
 "FsWindow -name main; $examples $lb $lbargs $okb"

Example programs 119

E
x
a

m
p

le
 p

ro
g

ra
m

s
E
x
a

m
p

le
 p

ro
g

ra
m

s
E
x

a
m

p
le

 p
ro

g
ra

m
s

E
x

a
m

p
le

 p
ro

g
ra

m
s

E
x

a
m

p
le

 p
ro

g
ra

m
s

use either bitmap or pixmap files

/bin/rm -f $logo $hw

if (("`uname`" == "OSF1") || \
 ("`uname`" == "AIX" && "`uname -v`" == "4") ||
\
 ("`uname`" == "SunOS" && \
 "`uname -r | cut -d. -f1`" == "5")) then
 ln -s $logoxpm $logo; ln -s $hwxpm $hw
else
 ln -s $logoxbm $logo; ln -s $hwxbm $hw
endif

Finesse dialog

Fsopen
Fsdisplay -w "$mainwin"
while (1)
 switch ($fsbutton)
 case OK:
 case a:
 break
 case s+c:
 Fsecho "Finesse by:"
 Fsecho "science+computing gmbh"
 Fsecho "Hagellocher Weg 71"
 Fsecho "D-72070 Tuebingen"
 Fsecho "Germany"
 Fsecho "Phone: (49) 7071/9457-0"
 Fsecho "Fax: (49) 7071/9457-27\c"
 set updt = "-r s+c:background:IndianRed3"
 breaksw
 default:
 (unsetenv FSREADFILE FSWRITEFILE; \
 $cshdir/$fsbutton)
 set updt = "-r
${fsbutton}:background:IndianRed3"
 breaksw
 endsw
 Fsdisplay -n main $updt
end
Fssave
/bin/rm -f $logo $hw
Fsclose

Figure 35 master demo examples_csh

In the same way as in examples_sh, with this script the
examples located in the csh subdirectory can be called. The script

120 Finesse User’s Guide

looks a bit simpler, but X bitmaps and X pixmaps are giving it a
new aspect. Two of the action buttons show bitmaps or pixmaps
instead of text labels. One is the Finesse logo, the other a globe for
the hello_world example. These pictures are embedded by
setting resources in the resource file Examples_csh as follows:

*hello_world*labelType: XmPIXMAP
*hello_world*labelPixmap: hello_world
*s+c*labelType: XmPIXMAP
*s+c*labelPixmap: logo

Here the shell script differentiates between several cases, because
not every X implementation of the different platforms supports
multicolored or grayscaled pixmaps, in contrast to bitmaps with
only two colors. Depending on architecture the file names
hello_world and logo specified in the resource file are linked
to the real files hello_world.xpm and logo.xpm or
hello_world.xbm and logo.xbm, respectively. These files are
located in the $FINESSEPATH/app-defaults/bitmaps
subdirectory. Setting the environment variable XAPPLRESDIR to
this path makes sure that the files are found because
$XAPPLRESDIR/bitmaps is one of the paths followed when
looking for bitmap files. You can find more on installation paths
for bitmap files in the manpage for XmGetPixmap or in vendor
specific documentation.

Furthermore, bitmaps can be used as icons to distinguish between
different iconified applications. One possibility to link an
application to a bitmap is to store in the
$XAPPLRESDIR/bitmaps directory a bitmap file named exactly
as the application itself. Your shipment contains a bitmap file
examples_csh in the bitmaps subdirectory so that the Finesse
logo appears in the icon when iconifying the application. The
application hello_world, too, will have its proper globe icon by
the link set for the label pixmap.

Example programs 121

E
x
a

m
p

le
 p

ro
g

ra
m

s
E
x
a

m
p

le
 p

ro
g

ra
m

s
E
x

a
m

p
le

 p
ro

g
ra

m
s

E
x

a
m

p
le

 p
ro

g
ra

m
s

E
x

a
m

p
le

 p
ro

g
ra

m
s

A window for
listing and killing of
processes

The script fkill script, Figure , is a more elaborate version of the
kill_sleep example in the section on lists. The list of processes
shown may be defined by both of the text fields in the upper part
of the window shown in Figure 36. The input for the Options:
field may be any argument of the ps command on the given
platform. It is given to the ps command "as is", which in turn
generates the entries for the process table shown. The Pattern:
text field serves as a filter for the list of processes shown. Example:
In a System V environment the string -ef in the Options: text
field and root in the Pattern: text field may be used to restrict
the processes shown in the list to those of user root. The kill
button kills all selected processes with the signal chosen. The
update button may be used to refresh the listing.

Figure 36 Window for listing and killing processes

fkill script

#! /bin/sh
Demo script for killing processes with sh script

. ${FINESSEPATH-/usr/local/finesse}/fsshinit

get list of processes and PID column number
#
list_proc()
{
list=`(ps $opt | awk 'NR==1 { i=1; while ($i !~ /^PID$/)

122 Finesse User’s Guide

i++;
 print "col="i;
 print " proclist='\''"; }
 NR>1 && $0 !~ /awk/ && /'"$patt"'.*/
 { print $0; }
 END { print "'\''"; }'
) 2>errfile`
if [-s errfile] ; then
 cat < errfile; /bin/rm errfile
 exit 1
else
 eval "$list"
 /bin/rm errfile
fi
}

update list of processes in kill window
#
update_list()
{
 deletelist='*[delete]'
 list_proc
 addlist="`echo "$proclist" | awk '{ print
$0"[add]" }'`"
 updatearg="-v"
 updatelist="procsinout=$deletelist$cr$addlist"
 windowarg=
 windowlist=
}

check input
#
case "$1" in
 ?|help)
 echo "Usage: fkill \
['<psoptions>'] [<pattern>]" >&2
 exit 2 ;;
 -*) opt=$1; comm="ps $opt" ; shift ;;
 *) comm=ps;;
esac
patt="$1"

get initial list of processes
and declare window
#list_proc
cr="
"
windef="
 FsWindow -name killwin
 -title `basename $0`;
 FsSeparator -line no;
 FsForm -name form1

Example programs 123

E
x
a

m
p

le
 p

ro
g

ra
m

s
E
x
a

m
p

le
 p

ro
g

ra
m

s
E
x

a
m

p
le

 p
ro

g
ra

m
s

E
x

a
m

p
le

 p
ro

g
ra

m
s

E
x

a
m

p
le

 p
ro

g
ra

m
s

 -orientation horizontal
 -packing tight
 -spacing 30;
 FsText -label Options: -parent form1
 -var opt='$opt' -spacing 10;
 FsText -label Pattern: -parent form1
 -var patt='$patt' -spacing 10;
 FsRadio -label Signals:
 -items 'INT KILL TERM'
 -var signal==TERM;
 FsSeparator -line no;
 FsList -label 'Select processes to kill:'
 -items '$proclist'
 -nvisible 10
 -mode multiple -inputsep '$cr'
 -outputsep '$cr'
 -var procsinout='';
 FsSeparator;
 FsPushButton -label Kill
 -fsbutton k -winstat touch;
 FsPushButton -label Update
 -fsbutton u -winstat touch;
 FsPushButton -label Exit
 -fsbutton e -nrows 1;"

Open server and display window
#
Fsopen -o 3 "$@"
Kill selected processes and/or update list
#
updatearg=
updatelist=
windowarg="-w"windowlist="$windef"

while :
do
Fsdisplay "$windowarg" "$windowlist"\
 "$updatearg" "$updatelist"\
 -m "List and kill processes"\
 -n killwin
 if [$? -ne 0] ; then
 Fsclose; exit 1
 fi
 case $fsbutton in
 k) case $signal in
 INT) SIG=2 ;;
 KILL) SIG=9 ;;
 TERM) SIG=15
 esac
 if ["$procsinout" != ""] ; then
 kill -$SIG `echo "$procsinout" |
 awk '{ print $'$col'}'`

124 Finesse User’s Guide

 update_list
 else
 updatelist=
 updatearg= Fsecho "No processes selected..."
 fi ;;
 u) update_list ;;
 e) Fsclose; exit ;;
 esac
 windowarg=
 windowlist=
done

Resource file

The example listing is followed by a listing of the complete
resource file Fkill that should be placed in the app-defaults
directory, typically /usr/lib/X11/app-defaults. The
resource file also contains the resources from the Finesse resource
file Finesse, since these backup resources are only set by the
application if no app-defaults file is found. If X11R5 is already
installed the resources from the Finesse file need not be loaded
explicitly but may be included simply by inserting the line

#include "/usr/local/finesse/Finesse"

at the beginning of Fkill.

! Resource file Fkill
!
! Resources from file Finesse
!
*font: -adobe-helvetica-bold-r-normal--14-*iso8859-1
*fontList: -adobe-helvetica-bold-r-normal--14-*iso8859-1
*title: Finesse
*Echo.title: Echo
*Save.title: Save*XmText*translations:
#override \n\
Ctrl<Key>A: beginning-of-line()\n\
Mod1<Key>B: backward-word()\n\
Ctrl<Key>D: delete-next-character()\n\
Mod1<Key>D: delete-next-word()\n\
Mod1<Key>Delete: delete-previous-word()\n\
Ctrl<Key>E: end-of-line()\n\
Mod1<Key>F: forward-word()\n\
Ctrl<Key>K: delete-to-end-of-line() \n\
Ctrl<Key>J: delete-to-start-of-line()\n\
Ctrl<Key>U: delete-to-end-of-line()delete-to-start-of-line()
*XmText*baseTranslations: #override \n\
Ctrl<Key>A: beginning-of-line()\n\

Example programs 125

E
x
a

m
p

le
 p

ro
g

ra
m

s
E
x
a

m
p

le
 p

ro
g

ra
m

s
E
x

a
m

p
le

 p
ro

g
ra

m
s

E
x

a
m

p
le

 p
ro

g
ra

m
s

E
x

a
m

p
le

 p
ro

g
ra

m
s

Mod1<Key>B: backward-word()\n\
Ctrl<Key>D: delete-next-character()\n\
Mod1<Key>D: delete-next-word()\n\
Mod1<Key>Delete: delete-previous-word()\n\
Ctrl<Key>E: end-of-line()\n\
Mod1<Key>F: forward-word()\n\
Ctrl<Key>K: delete-to-end-of-line() \n\
Ctrl<Key>J: delete-to-start-of-line()\n\
Ctrl<Key>U: delete-to-end-of-line()delete-to-start-of-line()
!
! application-specific resources!
 background: SteelBlue
*foreground White
*XmList*background: DeepSkyBlue
*XmText*background: DeepSkyBlue
*XmList*foreground: Black
*XmText*foreground: Black
*Info*background: IndianRed2
*XmPushButton*background: IndianRed3
*form1*XmLabel*width: 60
*form1*XmText*width: 80
*FsRadio*orientation: XmHORIZONTAL
*FsRadio*XmLabel*width: 120
*XmSeparator*height: 10
*XmPushButton*width: 105
*FsRadio*selectColor: IndianRed3

126 Finesse User’s Guide

A window for file
archiving

The example script software is a prototype Finesse version for
use of the Unix tar command. Like the previous example it
operates with function definitions which improves the structuring
of shell scripts. The window generated allows to choose an action
that will be applied to all files selected in the list as shown in
Figure 37. In the lower part of the window an archive must be
given for the files in question. If the archive is a file or a directory
its name has to be inserted in the text field to the right of the
File/Directory toggle button. The command generated from
the script is not really carried out but just displayed in the echo
window. As in the previous example, also the contents of the
resource file are shown. Note that the correct placement of the text
field is achieved by setting the height resource for the (invisible)
separator named sep2. Of course, by customizing the device file
names for the tape devices to your site and making the file or
directory listing more flexible this prototype may be used as a
simple OSF/Motif tar interface.

Example programs 127

E
x
a

m
p

le
 p

ro
g

ra
m

s
E
x
a

m
p

le
 p

ro
g

ra
m

s
E
x

a
m

p
le

 p
ro

g
ra

m
s

E
x

a
m

p
le

 p
ro

g
ra

m
s

E
x

a
m

p
le

 p
ro

g
ra

m
s

Figure 37 A window for delivering software

software script
#! /bin/sh
#
. ${FINESSEPATH-/usr/local/finesse}/fsshinit#
create=create
extract=extract
list=list
copy=copy

128 Finesse User’s Guide

Floppy=Floppy
Exabyte=Exabyte
QIC=QIC
DAT=DAT
DV=File/Directory
DVe=File/Directories

windef="
 FsWindow -name tarwin
 -title xtar
 -btype oxa;

 FsSeparator;

 FsForm -name form1;
 FsRadio -label Action:
 -items '$create $extract $list
$copy' -parent form1 -var key==$extract;

 FsList -label $DVe:
 -items '`ls`'
 -nvisible 10
 -include yes
 -mode multiple
 -var filelist=='`ls`';
 FsSeparator -name sep1 -line dashed;

 FsForm -name form2 -orientation horizontal;

 FsRadio -label Archive:
 -nrows 5
 -parent form2
 -var archive
 -items '$Floppy $DV $Exabyte $QIC $DAT';

 FsForm -name form3 -parent form2;

 FsSeparator -line no -name sep2 -parent form3;
 FsText -var tarfile -parent form3;
 FsSeparator -line soliddouble;"

Fsopen "$@"

Fsdisplay -w "$windef"
if [$? -ne 0 -o "$fsbutton" != "o"] ; then
 Fsclose; exit
fi

Certain conditions must be met:

1) list of files must be given

Example programs 129

E
x
a

m
p

le
 p

ro
g

ra
m

s
E
x
a

m
p

le
 p

ro
g

ra
m

s
E
x

a
m

p
le

 p
ro

g
ra

m
s

E
x

a
m

p
le

 p
ro

g
ra

m
s

E
x

a
m

p
le

 p
ro

g
ra

m
s

testfilelist()
{
 if [-z "$filelist"] ; then
 mesg="Please specify $DVe ..."
 return 1 # Error
 else
 return 0 # OK
 fi
}
2) For "Copy" or "File/Directory",
tar file must be given

testtarfile()
{
 if ["$key" = "$copy" -o "$archive" = "$DV"] ; then
 if [-z "$tarfile"] ; then
 mesg="Please specify $DV ..."
 return 1; # Error
 else
 return 0; # OK
 fi
 else
 return 0; # don't mind
 fi
}
test conditions

until testfilelist &&
 testtarfile do
 Fsdisplay -n tarwin -m "$mesg"
 if [$? -ne 0 -o "$fsbutton" != "o"] ; then
 Fsclose; exit
 fi
done

Device file for archive

case $archive in
 $Floppy) dev="f /dev/floppy";;
 $Exabyte) dev="f /dev/exa";;
 $DAT) dev="f /dev/dat";;
 $QIC) dev="f /dev/qic";;
 $DV) case $key in
 $copy) dev="$tarfile";;
 *) dev="f $tarfile";;
 esac;;
esac

Now the command may be put together

case $key in
 $create) com="tar cv$dev $filelist";; $extract)

130 Finesse User’s Guide

com="tar xv$dev $filelist";;
 $list) com="tar t$dev $filelist";;
 $copy) com="tar cf - $filelist | (cd $dev; tar xf -)";;
esac

final hint

case $key in
 $create|$extract|$list)
 Fsdisplay -w "FsWindow -btype oa;" -m "Medium inserted?"

 if [$? -ne 0 -o "$fsbutton" != "o"] ; then
 Fsclose; exit
 fi;;
esac

just pretend to do
#

Fsecho "Command:"
Fsecho $com
Fsecho started.

sleep 5Fsclose

Resource file

The corresponding resource file XTar assumes an X11R5
environment because of the #include statement at the beginning:
! Resource file XTar
!
#include "/usr/local/finesse/Finesse"

*background: DeepSkyBlue
*Info*background: IndianRed2
*Echo*XmPushButton*background: IndianRed3
*Echo*XmPushButton*width: 100
*XmList*background: SteelBlue
*XmList*background: White
*XmPushButton*width: 90
*XmPushButton*background: IndianRed3
*XmText*background: MidnightBlue
*XmText*width: 150
*XmToggleButton*foreground: Orange
*XmToggleButton*selectColor: IndianRed3
*sep1*height: 20
*sep2*height: 50

Example programs 131

E
x
a

m
p

le
 p

ro
g

ra
m

s
E
x
a

m
p

le
 p

ro
g

ra
m

s
E
x

a
m

p
le

 p
ro

g
ra

m
s

E
x

a
m

p
le

 p
ro

g
ra

m
s

E
x

a
m

p
le

 p
ro

g
ra

m
s

Example stars Showing list handling, example stars demonstrates additional
possibilities of using perl as a script language. Perl is optimal
particularly for lists as two of its advantages, using arrays and
handling character strings, can be exploited:

Figure 38 window stars

#!/usr/local/bin/perl
$ENV{'FINESSEPATH'} = '/usr/local/finesse'
 if !$ENV{'FINESSEPATH'};
require("$ENV{'FINESSEPATH'}/fsperlinit");

132 Finesse User’s Guide

read primitive database and prepare lists

require("$ENV{'FINESSEPATH'}/examples/perl/.starsdb")
;
&make_random_lists;

define user interface

$choicelabel = "Random
Choice";

$windef = "FsWindow -name starswin
 -title stars;
 FsRadio -var fsmode -label Mode: -winstat touch
 -fsbutton fsmode
 -items 'Beginner Expert Answer';
 FsForm -name topform
 -orientation horizontal;
 FsList -label Constellation:
 -inputsep '/'
 -outputsep '/'
 -mode single
 -items '$list_of_consts'
 -var const
 -name const
 -expert show
 -parent topform
 -nvisible 15;
 FsList -label 'List of Stars:'
 -inputsep '/'
 -outputsep '/'
 -items '$list_of_stars'
 -nvisible 15
 -var fsstars
 -name fsstars
 -expert show
 -parent topform
 -mode single;
 FsLabel -label
 'Press \\'Random Choice\\' to select
constellation:'
 -name fsresult;
 FsList -label 'Relation:'
 -inputsep '/'
 -outputsep '/'
 -items ''
 -var rel
 -name rel
 -nvisible 5;
 FsPushButton -label '$choicelabel'
 -name choice -fsbutton Choice
 -winstat touch;

Example programs 133

E
x
a

m
p

le
 p

ro
g

ra
m

s
E
x
a

m
p

le
 p

ro
g

ra
m

s
E
x

a
m

p
le

 p
ro

g
ra

m
s

E
x

a
m

p
le

 p
ro

g
ra

m
s

E
x

a
m

p
le

 p
ro

g
ra

m
s

 FsPushButton -label Show -name show
 -winstat touch;
 FsPushButton -label Clear -name clear
 -winstat touch;
 FsPushButton -label Exit -fsbutton a;
";

&Fsopen(@ARGV);
&Fsdisplay("-w", "$windef", "-n", "starswin");

while () {
 if ($fsbutton eq "fsmode") {

 # Change of mode in radio box 'Mode'

 @fsdargs = &get_fsmode_args($fsmode);

 } elsif ($fsbutton eq "Choice") {

 # Button 'Choice' was pressed

 if (($fsmode eq "Beginner") ||
 ($fsmode eq "Expert")) {
 @fsdargs = &get_choice_args($fsmode);
 }
 } elsif ($fsbutton eq "Show") {

 # Button 'Show' was pressed

 if ($fsmode eq "Beginner") {
 @fsdargs =

&get_beginner_args($allstars{$const},$fsstars);
 } elsif ($fsmode eq "Expert") {
 @fsdargs =

&get_expert_args($allstars{$const},$fsstars);
 } elsif ($fsmode eq "Answer") {
 @fsdargs =
&get_answer_args($const,$fsstars);
 }
 } elsif ($fsbutton eq "Clear") {
 @fsdargs = @clear;
 } else {
 last;
 }
 &Fsdisplay("-n", "starswin", @fsdargs);
}

&Fsclose;

#

134 Finesse User’s Guide

functions
#

sub make_random_lists {

make list of stars and constellations

 srand(time|$$);

 foreach $value (values (%allstars)) {
 @all_stars = (@all_stars, split('/',
$value));
 }
 @all_consts = keys(%allstars);

make lists random for window declaration

 push(@rand_stars, splice(@all_stars, rand
@all_stars, 1))
 while (@all_stars);
 $list_of_stars = join('/', @rand_stars);

 push(@rand_const, splice(@all_consts, rand
@all_consts, 1))
 while (@all_consts);
 $list_of_consts = join('/', @rand_const);

prepare clearing of lists

 @clear = ("-v", "const=*[unselect]",
 "-v", "fsstars=*[unselect]",
 "-v", "rel=*[delete]",
 "-r", "fsresult:labelString:");
}

sub get_fsmode_args {

 # prepare window setup according to selected mode

 if ($_[0] eq "Beginner") {
 $fslabel = "Push Choice to Select
Constellation:";
 $constpol = "XmBROWSE_SELECT";
 $starspol = "XmBROWSE_SELECT";
 } elsif ($_[0] eq "Expert") {
 $fslabel = "Push Choice to Select
Constellation:";
 $constpol = "XmBROWSE_SELECT";
 $starspol = "XmEXTENDED_SELECT";
 } elsif ($_[0] eq "Answer") {
 $fslabel = "Select Constellation and Stars:";
 $constpol = "XmEXTENDED_SELECT";

Example programs 135

E
x
a

m
p

le
 p

ro
g

ra
m

s
E
x
a

m
p

le
 p

ro
g

ra
m

s
E
x

a
m

p
le

 p
ro

g
ra

m
s

E
x

a
m

p
le

 p
ro

g
ra

m
s

E
x

a
m

p
le

 p
ro

g
ra

m
s

 $starspol = "XmEXTENDED_SELECT";
 }

 ("-r", "fsresult:labelString:$fslabel", @clear,
 "-r", "const:selectionPolicy:$constpol",
 "-r", "fsstars:selectionPolicy:$starspol");
}

sub get_choice_args {

 # make random choice in list of stars

 if ($_[0] eq "Beginner") {
 $fslabel =
 "Select corresponding main star and
press 'Show'";
 } elsif ($_[0] eq "Expert") {
 "Select corresponding stars and press
'Show'";
 }
 ("-v", "rel=*[delete]", "-v",

"const=*[unselect]/$rand_const[rand(@rand_const)]",
 "-r", "fsresult:labelString:$fslabel");
}

sub get_answer_args {

 # determine answer for selections

 local(%MARK, $entry, @chosenstars);

 # begin with chosen constellations

 if ("$_[0]") {
 @const = split(/\//,$_[0]);
 foreach (@const) {
 @stars = split(/\//, $allstars{$_});
 push(@chosenstars, @stars);
 }
 }

 # add chosen stars not yet processed

 if ("$_[1]") {
 @stars = split(/\//, $_[1]);
 grep($MARK{$_}++, @askedstars);
 @remainingstars = grep(!$MARK{$_}, @stars);
 push(@chosenstars, @remainingstars);
 }

 foreach (@chosenstars) {

136 Finesse User’s Guide

 $entry = "$entry$_: $genitive{$_}/";
 }

 ("-v", "rel=*[delete]/$entry*[unselect]");
}

sub get_beginner_args {

 # compare main star with guess

 if ("$_[0]" && "$_[1]") {
 ($answer) = split(/\//,$_[0]);
 if ("$answer" eq "$_[1]") {
 $fslabel = "Congratulations!" ;
 } else {
 $fslabel = "Sorry." ;
 }
 ("-v", "rel=*[delete]/$answer:
$genitive{$answer}/*[unselect]",
 "-r", "fsresult:labelString:$fslabel");
 } else {
 $fslabel =
 "Select constellation and main star
first." ;
 ("-r", "fsresult:labelString:$fslabel");
 }
}

sub get_expert_args {

 # compare all stars of const with guess

 if ("$_[0]" && "$_[1]") {
 local(%MARK);

 @answer = split(/\//,$_[0]);
 @guess = split(/\//,$_[1]);

 grep($MARK{$_}++, @answer);
 $hits = grep($MARK{$_}, @guess);
 $misses = @answer - $hits;
 $errors = @guess - $hits;
 $fslabel =
 "Hits: $hits, Misses: $misses, Errors:
$errors";

 ("-v", "rel=*[delete]/$_[0]/*[unselect]",
 "-r", "fsresult:labelString:$fslabel");
 } else {
 $fslabel = "Select constellation and stars
first." ;
 ("-r", "fsresult:labelString:$fslabel");

Example programs 137

E
x
a

m
p

le
 p

ro
g

ra
m

s
E
x
a

m
p

le
 p

ro
g

ra
m

s
E
x

a
m

p
le

 p
ro

g
ra

m
s

E
x

a
m

p
le

 p
ro

g
ra

m
s

E
x

a
m

p
le

 p
ro

g
ra

m
s

 }
}

Figure 39 listing stars

The first part of the script essentially contains window definition
and Finesse dialog. At the beginning the require function reads a
primitive data base file assigning stars to constellations in the
form

$allstars{"Orion"}="Betelgeuse/Rigel/Bellatrix/
Mintaka";

The remainder of the script contains various subroutines that are
called during the dialog. Thus using subroutines the dialog part is
simple and well structured: after the window is displayed for the
first time the course splits according to the push button pressed
($fsbutton) and an action is executed corresponding to the
mode set currently ($fsmode). Every action is defined in a perl
subroutine and returns as a result the array of arguments for the
next Fsdisplay call. The last array expression of a subroutine is
assigned to array fsdargs as return value.

One more of the important characteristics of perl, besides arrays,
is the large number of built-in functions; in particular, the
randomized sequence of stars and constellations (in subroutine
make_random_lists) as well as the random selection of a single
star in the question modes beginner and expert (subroutine
get_choice_args) is possible only in perl. The simple
evaluation of correct, missing and wrong star selections in the
expert mode (subroutine get_expert_args) shows arithmetic
qualities in perl that are far superior to shell calculations.

138 Finesse User’s Guide

